簡易檢索 / 詳目顯示

研究生: 陳育珩
Chen, Yu-Heng
論文名稱: 我國新及再生能源電力發展政策工具之效益評估
Evaluation on the effectiveness of policy instruments for electricity development from new and renewable energy
指導教授: 陳家榮
Chen, Chia-Yon
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 102
中文關鍵詞: 新及再生能源效益評估政策工具
外文關鍵詞: new and renewable energy, Evaluation on the effectiveness, policy instrument
相關次數: 點閱:132下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 能源是推動社會進步和人類賴以生存的基礎,隨著經濟發展、人口增加與生活水準的提升,我們也愈依賴能源的使用。近百年來,全球能源消耗平均每年以3%的速度遞增,未來隨著世界人口的增加和社會生活的進步,全世界能源消耗將以更快的速度增長。大量能源的消耗也對應產生許多環境問題,諸如全球暖化、氣候變遷與生態破壞等,皆有可能影響到人類未來的生存及生活,因此各國莫不積極期望朝向低排碳、高效率的使用資源方式邁進。
    根據國際能源總署IEA(2010)報告指出,為達到2050年降低430億噸二氧化碳排放的方法,包括有碳捕捉與封存、新能源、核能發電、發電效率改變以及能源使用效率提升等。其中新能源發展佔了17%,顯見其有重要的影響力,且新能源除了能減少碳排放外,亦可發展厚植新產業發展,達到經濟成長的目標。
    政府在新能源的發展中扮演著重要的角色,主要以提供新能源發電項目的資金補助與制定各種有利的發展措施,輔以資助相關技術的研究與開發等,但由於缺乏一完整的市場機制,加上傳統電力的環境成本並未完全地計算在電力價格中,造成新能源所產生的電力與傳統能源電力相比之下缺乏競爭優勢,相對也使得新能源的發展產生了極大的阻礙。且每一種新科技或新技術在發展初期,往往充滿著許多不確定性與風險,造成未來發展性與適用性不易確認,而新能源技術更是如此。因此如何有效的運用政府政策,發展適合的新能源,將資源作一有效地分配,以達成兼顧經濟成長、環境保護與能源安全的目標,實為一重要的課題。
    總結而論,本研究的研究目的包括以下三點:
    1. 分析新能源電力發展政策:分析我國與世界主要國家發展新能源歷程與相關的政策規劃,以利模型參數設定,並作為策略擬定之參考依據。
    2. 評估新能源發電成本:依據台灣目前現況與政策發展,推估新能源未來發展成本趨勢,了解在現行制度下,未來台灣新能源發展趨勢與價格走向,以利模型參數設定,及作為政府制定能源政策之參考依據。
    3. 新能源電力政策效益評價:以實質選擇權理論為基礎,考量影響政策效益變動的不確定性因素(參數),評價新能源電力發展政策所能帶來的實質政策價值,以避免政府財政支出造成無謂的浪費,提供政府衡量目前政策實施效益與成效判斷。
    本研究顯示,直至2030年發展風力發電所帶來的政策效益價值為2,522百萬元,太陽能發電的政策效益為-8,755百萬元,廢棄物發電的政策價值為8,727百萬元,燃料電池發電政策效益價值為-35,340百萬元。當運用實質選擇權模式做為判斷依據時,能將未來的不確定性納入考量,顯示政策規劃的真正價值,亦能正確判斷政策施行的可行性與估算政策效益價值。

    Due to energy depletion and global warming, the development of green industry has become a major energy policy issue and seeks to achieve the goals of energy conservation and reduction of carbon emissions. But nowadays, new and renewable energy (RE) investment was still not to achieve the cost-benefit. Therefore, the government must assess the return on investment of its policies in order to determine the effectiveness of those policies. Thus, the development policy of new energy industry would not only yield economic and environmental benefits, but also positively impact new energy policy planning.

    This study presents a value evaluation model that integrates learning curve model and grey forecasting model on new and renewable energy technologies into real option analysis (ROA) methods. The proposed model evaluates quantitatively the policy value provided by developing new and renewable energy in the face of uncertain fossil fuel prices and new and renewable energy policy-related factors. The economic intuition underlying the policy-making process is elucidated, while empirical analysis illustrates the option value embedded in the current development policy in Taiwan for new and renewable energy. In addition, the study employs learning curve to explore the learning effect of power generation, and examines whether firms can actually boost power generation cost efficiency through government subsidies and R&D. Due to the difficulty of obtaining data, the grey system is used to ease data collection difficulties.

    In summary, the proposed policy value evaluation model measures uncertainty and other factors affecting new and renewable energy industry development policy. The evaluation model can shed light on the value of policy implementation. Additionally, the proposed model can forecast cost efficiencies of new technologies when available data are limited, especially in the case of new and renewable energy technologies.

    目錄 第一章 緒論………………………………………………………………………1 第一節 研究背景…………………………………………………………………1 第二節 研究目的與內容…………………………………………………………3 第三節 文獻回顧與探討…………………………………………………………4 第四節 研究方法與架構…………………………………………………………9 第二章 新及再生能源概況………………………………………………………11 第一節 新及再生能源定義與範圍………………………………………………11 第二節 新及再生能源發展概況…………………………………………………13 第三節 台灣新及再生能源發展現況……………………………………………18 第三章 新及再生能源電力發展政策工具………………………………………21 第一節 新及再生能源電力發展政策工具分類…………………………………21 第二節 躉購費率…………………………………………………………………23 第三節 台灣新及再生能源政策發展概況………………………………………28 第四章 選擇權效益模式建立……………………………………………………30 第一節 研究方法…………………………………………………………………30 第二節 模式建構…………………………………………………………………40 第三節 參數估計…………………………………………………………………43 第五章 實證與分析………………………………………………………………52 第一節 傳統燃料趨勢……………………………………………………………52 第二節 新及再生能源趨勢………………………………………………………55 第三節 實質選擇權政策效益評估………………………………………………83 第六章 結論與建議………………………………………………………………91 第一節 結論………………………………………………………………………91 第二節 建議與未來方向…………………………………………………………94 參考文獻…………………………………………………………………………96

    1. 王軍生、呂瑞賢、劉學,2009,「新能源和可再生能源-經濟寒流下逆勢湧動的暖潮」,2009中國能源發展報告,第162-166頁,社會科學文獻出版社。
    2. 工研院,2010,「燃料電池發展趨勢評估報告」。
    3. 尤如謹,2006,「台灣再生能源產業發展策略探討」,工研院IEK。
    4. 甘東敏,2003,「實質選擇權在投資決策之應用-以台電能源電為例」,中原大學企業管理系碩士論文。
    5. 李珣琮,2011,「再生能源政策之效益評價模式建構與應用」,成功大學資源工程系博士論文。
    6. 呂威賢、李欣哲,2005,「先進國家再生能源經驗之借鏡」,太陽能及新能源學刊,第10 卷,第1 期,第39-43 頁
    7. 能源局,2010,「中華民國九十八年能源統計手冊」,經濟部能源局。
    8. 能源局,2010,「能源產業科技白皮書」,經濟部能源局。
    9. 能源局,2011,「再生能源躉購及基金費率研析計畫」,台灣經濟研究院
    10. 能源局,2011,「再生能源躉購制度智庫及政策研究計畫」,台灣經濟研究院。
    11. 能源局,2011,「汽電共生輔導設置與經濟效益分析及煤炭供需之研究」,台灣綜合研究院。
    12. 鄒智純,2011,「我國再生能源發展條例立法過程與法案內容之研究」,台灣大學政治學系碩士論文。
    13. 溫麗琪、王子銘、黃聖元,2010,「我國燃料電池產業市場規模利基及產品策略分析」,中華民國能源經濟學會99年年會暨能源經濟學會學術研討會。
    14. 廖四郎、陳坤銘、鄭宗松,2003,「最適投資決策與產品生命週期─實質選擇權分析法」,山管理評論, 11期,第3卷,571-596頁。
    15. 劉美秀,2010,「需求不確定下低碳能源科技投資決策之評估:實質選擇權法」,長榮大學企業管理系碩士論文。
    16. 劉恆齊,2010,「綠色能源科技與減碳效益之選擇價值評估之研究」,台北大學自然資源與環境管理系碩士論文。
    17. 蔡文靜,2010,「綠色實質選擇權」,成功大學財務金融系碩士論文。
    18. 顏錫銘,2003,「實質選擇權」,華泰文化出版。
    19. Abadie, L. M. and Chamorro, J. M., 2008, European CO2 prices and carbon capture investments, Energy Economics, Vol.30, No.6, pp.2992–3015.
    20. Aguerrevere, F. L., 2003, Equilibrium investment strategies and output price behavior: a real-options approach, The Review of Financial Studies, Vol.16, No.4, pp. 1239–1272.
    21. Amram, M. and Kulatilaka, N., 1999, Disciplined decisions: aligning strategy with the financial markets, Harvard Business Review, Vol.77, No.1, pp.95–104.
    22. Anda, J., Golub, A. and Strukova, E., 2009, Economics of climate change under uncertainty: benefits of flexibility, Energy Policy, Vol.37, No.4, pp.1345–1355.
    23. Ansar, J. and Sparks, R., 2009, The experience curve, option value, and the energy paradox, Energy Policy, Vol.37, No.3, pp.1012–1020.
    24. Argote, L. and Epple, D., 1990, Learning curves in manufacturing, Science, Vol.247, No.4945, pp.920–924.
    25. Arrow, K. J., 1962, The economic implications of learning by doing, Review of Economic Studies, Vol.29, pp.155–173.
    26. Barreto, L. and Kypreos, S., 2004, Endogenizing R&D and market experience in the bottom-up energy system ERIS model, Technovation, Vol.24, pp.615–629.
    27. Benaroch, M. and Kauffman, R. J., 2000, Justifying electronic banking network expansion using real options analysis, MIS Quarterly, Vol.24, pp.197-225.
    28. Black, F. and Scholes, M., 1973, The pricing of options and corporate liabilities, The Journal of Political Economy, Vol.81, No.3, pp.637–654.
    29. Bøckman, T., Fleten, S. E., Juliussen, E. and Langhammer, H., 2008, Investment timing and optimal capacity choice for small hydropower projects, European Journal of Operational Research, Vol.190, No.2, pp.255–267.
    30. Boomsma, T. K., Meade, N., Fleten, S.-E., 2012, Renewable energy investments under different support schemes:A real options approach, European Journal of Operational Research, Vol.220, Issue:1, pp.225-237.
    31. Boyle, P., 1977, Options: a Monte Carlo approach, Journal of Financial Economics, Vol.4, pp.323-338.
    32. Clean Edge, 2011, Clean Energy Trends.
    33. Colpier, C. U. and Cornland, D., 2002, The economics of the combined cycle gas turbine - an experience curve analysis, Energy Policy, Vol.30, No.4, pp.309–316.
    34. Copeland, T. and Antikarov, V., 2001, Real Options - A Practitioner’s Guide, New York: Texere.
    35. Copeland, T., Koller, T. and Murrin, J. 2000, Valuation: Measuring and Managing the Value of Companies, 3rd Edition, New York: John Wiley & Sons.
    36. Cox, J. C., Ross, S. A. and Rubinstein, M., 1979, Option pricing: a simplified approach, Journal of Financial Economics, Vol.7, No.3, pp.229–263.
    37. Davis, G. A. and Owens, B., 2003, Optimizing the level of renewable electric R&D expenditures using real options analysis, Energy Policy, Vol.31, No.15, pp.1589–1608.
    38. Deng S, Johnson B, Sogomonian A., 2001, Exotic electricity options and the valuation of electricity generation and transmission assets, Decision Support Systems, Vol.30, pp.383–92.
    39. Department of Energy and Climate Change, 2011, Review of the generation costs and deployment potential of renewable electricity technologies in the UK.
    40. Dutton, J. M. and Thomas, A., 1984, Treating progress functions as a managerial opportunity, Academy of Management Review, Vol.9, No.2, pp.234–247.
    41. EPIA(European Photovoltaic Industry Association), 2005, Support schemes for Renewable Energy- A Comparative Analysis of Payment Mechanisms in EU.
    42. EPIA(European Photovoltaic Industry Association), 2010, Overview of European PV Support Schemes, Photovoltaic Observatory.
    43. Fan Y, Zhu L., 2010, A real options based model and its application to China‘s overseas oil investment decisions, Energy Economics, Vol.32, pp.627–637.
    44. Fleten, S. E. and Näsäkkälä, E., 2010, Gas Fired Power Plants: Investment Timing, Operating Flexibility and CO2 capture, Energy Economics, Vol.32, No.4, pp.805-816.
    45. Frayer, J. and Uludere, N. Z., 2001, What is it worth? application of real options theory to the valuation of generation assets, The Electricity Journal, Vol.4, No.8, pp.40–51.
    46. Fuel Cell Today (FCT), 2009, Fortnightly Newsletter.
    47. Fuel Cell Today (FCT), 2012, Fortnightly Newsletter.
    48. Fuss, S., Johansson, D. J. A., Szolgayova, J. and Obersteiner, M., 2009, Impact of climate policy uncertainty on the adoption of electricity generating technologies, Energy Policy, Vol.37, No.2, pp.733–743.
    49. Hamon, C., 2000, Experience curves of photovoltaic technology, IIASA Interim Report IR-00-014, Laxenburg, Austria: International Institute for Applied Systems Analysis.
    50. IEA, 2000, Experience Curves for Energy Technology Policy, OECD.
    51. IEA, 2004, Renewable Energy-Market & Policy Trends in IEA Countries.
    52. IEA, 2009, Technology Roadmap – Wind Energy, OECD.
    53. IEA, 2010, World Energy Outlook.
    54. IEA, 2011, Clean energy Progress Report.
    55. IEA, 2011, Multi-national Case Study of the Financial Cost of Wind Energy.
    56. IEA, 2011, Renewable Energy-Market & Policy Trends in IEA Countries.
    57. IEA, 2011, World Energy Outlook.
    58. IEA, 2012, Technology Roadmap Bioenergy for Heat and Power.
    59. IEA, 2012, World Energy Outlook.
    60. IPCC(Intergovernmental Panel on Climate Change), 2011, Potential of Renewable Energy Outline.
    61. IEEJ(The Institute of Energy Economics, Japan), 2010, Japan Renewable Energy Policy Platform.
    62. Kjaerland, F., 2007, A real option analysis of investments in hydropower - the case of Norway, Energy Policy, Vol.35, No.11, pp.5901–5908.
    63. Klaassen, G., Miketa, A., Larsen, K. and Sundqvist, T., 2005, The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom, Ecological Economics, Vol.54, No.2-3, pp.227–240.
    64. Kogut, B., Kulatilaka, N., 1994, Operating exibility, global manufacturing, and the option value of a multinational network, Management Science, Vol.40, pp.123-139.
    65. Kravetz, A., 2008, 2008 Global solar report cards, Green Cross International, United States of America.
    66. Kumbaroğlu, G., Madlener, R. and Demirel, M., 2008, A real options evaluation model for the diffusion prospects of new renewable power generation technologies, Energy Economics, Vol.30, No.4, pp.1882–1908.
    67. Luenberger, D. G., 1998, Investment Science, Oxford University Press.
    68. Martínez-Ceseña, E. A. and Mutale, J., 2011, Application of an advanced real options approach for renewable energy generation projects planning, Renewable and Sustainable Energy Reviews, Vol.15, Issue4, pp.2087-2094.
    69. McDonald, A. and Schrattenholzer, L., 2001, Learning Rate for Energy Technologies, Energy Policy, Vol.29, No.4, pp.255–261.
    70. Mesak, H.L and R.W. Coleman, 1992, Modeling the Effect of Subsidized Pricing on New product Diffusion, Omega: The International Journal of Management Science, Vol.20, No.3, pp.303-312.
    71. Miguel Mendonca, David Jacobs, Benjanin Sovacool, 2010, Powering the Green Economy:The Feed-In Tariff Handbook, Routledge.
    72. Mu˜noz JI, Contreras J, Caama˜no J, Correia PF, 2009, Risk assessment of wind power generation project investments based on real options, IEEE Bucharest powertech conference.
    73. Myers, S. C., 1977, Determinants of corporate borrowing, Journal of Financial Economics, Vol.5, No.2, pp.147–175.
    74. NARUC(National Association of Regulatory Utility Commissioners),2010, Frequently Asked Questions for State Utility Commissions.
    75. Neij, L., 1999, Cost dynamics of wind power, Energy, Vol.24, No.5, pp.375–389.
    76. Rickerson, W., F. Bennhold, and J. Bradbury, 2008, Feed-in Tariffs and Renewable Energy in the USA: A Policy Update, HighBeam Research, pp.26.
    77. Sanden, B. A., and Azar, C., 2005, Near-term technology policies for long-term climate targets economy wide versus technology specific approaches, Energy Policy, 33(12), pp.1557-1576.
    78. Sagar, A. and Zwaan, B., 2006, Technological innovation in the energy sector: R&D, deployment and learning-by-doing, Energy Policy, Vol.34, No.17, pp.2601–2608.
    79. Sharpe, W. F., 1978, Investments, Englewood Cliffs, New Jersey: Prentice- Hall.
    80. Shun-Chung Lee and Li-Hsing Shih, 2011, Enhancing renewable and sustainable energy development based on an options-based policy evaluation framework - Case study of wind energy technology in Taiwan, Renewable & Sustainable Energy Reviews, Vol.15, No.5, pp.2185–2198.
    81. Siddiqui, A. S., and Fleten, S. E., 2010, How to Proceed with Competing Alternative Energy Technologies: a Real Options Analysis, Energy Economics, Vol.32, No.4, pp.817-830.
    82. Siddiqui, A. S., Marnay, C. and Wiser, R. H., 2007, Real options valuation of US federal renewable energy research, development, demonstration, and deployment, Energy Policy, Vol.35, No.1, pp.265–279.
    83. Söderholm, P. and Sundqvist, T., 2007, Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technology, Renewable Energy, Vol.32, No.15, pp.2559–2578.
    84. Szlogayova, J., Fuss, S. and Obersteiner, M., 2008, Assessing the effects of CO2 price caps on electricity investments-a real options analysis, Energy Policy, Vol.36, No.10, pp.3974–3981.
    85. UNEP(United Nations Environment Programme), 2011, Towards a Green Economy:Pathways to Sustainable Development and Poverty Eradication.
    86. Venetsanos, K., Angelopoulou, P. and Tsoutsos, T., 2002, Renewable energy sources project appraisal under uncertainty - the case of wind energy exploitation within a changing energy market environment, Energy Policy, Vol.30, No.4, pp.293–307.
    87. Wang, C. H. and Min, K. J., 2006, Electric power generation planning for interrelated projects - a real options approach, IEEE Transactions on Engineering Management, Vol.53, No.2, pp.312–322.
    88. Wright, T. P., 1936, Factors affecting the costs of airplanes, Journal of the Aeronautical Sciences, Vol.3, pp.122–128.
    89. Yu W, Sheble G, Lopes J, Matos M., 2006, Valuation of switchable tariff for wind energy, Electric Power Systems Research, Vol.76, pp.382–388.
    網站
    1. 日本能源經濟研究所,http://eneken.ieej.or.jp/en/
    2. 日本太陽能光電協會,http://www.j-pec.or.jp/
    3. 台灣電力公司,http://www.taipower.com.tw/
    4. 世界風能協會,http://wwindea.org/home/index.php
    5. 全國能源會議網站,
    http://web2.moeaboe.gov.tw/ECW/Policy/EnergyMeeting/conclusion_1.htm
    6. 西班牙工業、旅游和經濟部,http://www.minetur.gob.es/es-ES/Paginas/index.aspx
    7. 再生能源網,http://re.org.tw/(uyqzwdaxtsqemtmwk3szvofu)/index.aspx
    8. 美國能源部,http://energy.gov/
    9. 美國政府能源資訊管理局,http://www.eia.gov/
    10. 英國能源部,http://www.viridisec.co.uk
    11. 英國能源與氣候變遷部門,http://www.decc.gov.uk/
    12. 英國天然氣暨電力市場管制機構,http://www.ofgem.gov.uk/sustainability/environment/fits/Pages/fits.aspx
    13. 經濟部能源局,http://www.moeaec.gov.tw/
    14. 德國聯邦環境,自然保護與核安全部,http://www.setatwork.eu/database/actors/A256.htm
    15. 歐洲太陽能光電產業協會,http://www.epia.org/
    16. 歐洲能源議會,http://www.erec.org/
    17. 聯合國環境規劃署,http://www.unep.org/

    無法下載圖示 校內:2018-08-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE