簡易檢索 / 詳目顯示

研究生: 施百鴻
Shih, Pai-Haung
論文名稱: 含重金屬泥渣類廢棄物再利用於水泥矽酸鹽燒製之定量研究
Quantitative Studies of Alite and Belite in Clinker Formation with Recycling of Heavy Metal Containing Ashes and Sludges
指導教授: 張祖恩
Chang, Juu-En
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 155
中文關鍵詞: 矽酸鹽類水泥晶相重金屬氧化物Rietveld晶相全定量技術水泥材料化含重金屬污泥焚化底渣
外文關鍵詞: Quantitative, Heavy metal containing sludge, Cement raw material, MSWI ash
相關次數: 點閱:113下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究添加垃圾焚化底渣及含重金屬污泥於水泥生料中燒製水泥,藉由測定產製水泥水化後抗壓強度表現以釐清影響燒成重要因子,並檢討作為水泥替代原料之可行性;研究中並開發晶相定量技術開發,探討重金屬氧化物對水泥中主要晶相生成量之影響。研究中分別以焚化底渣與含重金屬污泥添加燒製水泥外,並透過磁選、水洗、EDTA分離及重液分離技術分別去除存在於廢棄物中之鐵磁性、重金屬、鹽類等干擾水泥燒成之因子,經由水化後抗壓強度與晶相相對強度(QXRD)等比較以判斷各干擾因子影響性。接著,對美國NIST所驗證核發之標準水泥以Al2O3為添加內標準品,以長時間(8小時)與短時間(1小時)等掃瞄條件進行X光粉末繞射分析(XRD),所得圖譜以矽酸三鈣之各種同質多象(polymorph)組合進行晶相全定量(Quantitative Rietveld analysis)分析,所推求結果與認證之晶相全量比對,尋求最佳化晶相定量方式。最後透過全因子實驗設計法設計配比,分別添加1%、3%及6%等不同比例氧化銅、氧化鎳及氧化鋅等氧化物於模擬水泥生料,分別在950°C、1100°C、1250°C及1400°C等溫度燒成熟料,經XRD分析以Rietveld analysis所得晶相全量配合熱重熱差分析(TG/DTA),探討重金屬氧化物添加對於燒成水泥主要晶相影響。
      實驗結果顯示,以都市垃圾焚化底渣添加於生料燒成水泥時,當底渣添加量於10%以下時,燒成水泥水化後抗壓強度高達18MPa,符合中國國家標準(CNS)卜特蘭一型水泥規範。但當添加量高於10%,因添加後生料化學組成偏離原組成過多,燒成水泥水化後抗壓強度呈現急速下降現象。經水泥化學參數(LSF、SR、AR及HM)添加氧化鈣調整成分後,燒成水泥水化後抗壓強度可與市售水泥相當。另外以含重金屬污泥根據水泥化學參數調質添加於水泥生料,燒成熟料藉由QXRD法分析發現,當重金屬總含量低於3%時,對於熟料中主要矽酸三鈣(C3S)晶相有增強現象,可達市售水泥之140%;但當重金屬總含量高於3%時,對於C3S晶相有明顯降低效果;總含量高於6%時,相對強度僅為80%。研究結果顯示使用焚化底渣及含重金屬污泥作為水泥替代原料,在控制水泥化學參數及限制重金屬添加總量下具有可行性。
      水泥晶相定量方面,添加10%(重量比)結晶度百分之九十九以上之α-Al2O3(剛玉)粉末於標準水泥,配合以15˚-75˚(2θ)掃瞄範圍、每步階0.03˚及每兩秒一步階方式(1小時)設定XRD操作條件,可獲取有效XRD圖譜以進行晶相全定量分析。於Rietveld全定量過程以C3S之RM及RMT (rhombohedral, monoclinic and triclinic)等兩種同質多象(polymorph)組合,作為模式初始設定可涵蓋三種標準水泥特性範圍。以上分析與NIST核發認證比對,相對累積誤差僅介於7%~23%之間,方法具有其穩定性。同時,利用α-Al2O3晶相含量逆向推估,可得出水泥中玻璃相含量作為晶相全定量基礎。在以上XRD操作條件下,RMT組合作為Rietveld法模式初始設定,可提供快速穩定晶相定量方式以做為後續研究基礎。
      至於重金屬氧化物對水泥晶相之影響方面,燒成熟料中重金屬殘留量分析結果顯示,於燒結過程氧化鋅幾近完全逸散,逸散溫度介於950°C-1100°C間;而氧化銅與氧化鎳則分別有80%-90%及55%-70%殘留率。以DTA分析生料於燒成過程熱差狀況輔以晶相生成量結果顯示,在溫度較低狀況下(低於1300°C),添加3%重金屬氧化物可降低液相生成溫度,並進一步增加矽酸二鈣(C2S)生成量,其中以氧化鋅最為顯著,氧化銅次之,而氧化鎳影響較為不明顯。另外分析燒成熟料晶相生成量結果顯示,於1400°C溫度下,經由變異數分析顯示C3S與C2S兩種主要矽酸鹽類生成量受氧化銅及氧化鎳兩種成分影響。但矽酸鹽類總莫耳數並未受到添加金屬氧化物種類與添加量而產生統計上顯著之增減情形。此高溫燒結系統可視為處於接近平衡狀態,氧化物物種與添加量則為影響矽酸鹽類分布比例(C3S/C2S molar ratio)重要因子。根據此影響性,可建立以CuO添加量、NiO添加量及CuO添加量×NiO添加量等三者為參數之矽酸鹽分布比例經驗式。
      總結本研究結果顯示,焚化底渣、含重金屬污泥可作為調製水泥生料之替代原料,藉由水泥化學參數為調質因子及考量重金屬添加限值下,所產製水泥將可符合一般水泥規範。若產業廢棄物含有重金屬等干擾成分,於高溫下所添加之低量重金屬並未直接參與反應,但影響矽酸鹽類分布情況,而此影響則視重金屬物種與濃度而異。限於現行晶相分布比例公式並未考量重金屬之影響,於本研究所建立矽酸鹽分布經驗式可做為未來修正參考。以無機產業廢棄物作為水泥生產替代原料除可解決廢棄物處理處置問題外,並因水泥工業屬基礎工業,產品需求量大可解決現行資源化產業產品銷售通路問題,本研究結果可提供作為廢棄物水泥材料化參考,替未來資源化產業提供另一可行選項。

     Feasibility of municipal solid waste incineration (MSWI) bottom ash and heavy metal containing sludges as raw materials for cement production is investigated in this study. Uniaxial compression strengths (UCS) of hydrated clinkers produced from wastes replaced raw material are tested to clarify the influence of interference introduce by wastes. Also, a crystalline quantification technique is developed in order to investigate the effects of heavy metal oxides on the formation of silicate phase in clinkers.
     In this study, the MSWI ash is pretreated with techniques including magnet separation, water washing, EDTA separation and dense media separation to remove the possible interferences such as iron and salts prior to addition to raw mix. The results show that when the replacement percentage is below 10%(w/w), the UCSs of hydrated cement are higher than 18MPa, which could meet the Chinese National Standard (CNS) criteria for ordinary Portland Type I cement. But when the replacement percentage is higher than 10%(w/w), a dramatic drop of the UCSs is observed due to the insufficiency in calcium oxide. By adjusting the chemical compositions of replaced raw mix according to the compositional parameters (lime saturation factor, silica ratio, aluminum ratio and hydration modulus), the UCS of sintered clinker is as strong as commercial cement. The heavy metal containing sludge is added to the raw material with compositional parameter fulfilled. The results of QXRD show that when the total heavy metal contents in raw material is smaller than 3%, a increase to 140% of the tricalcium silicate (C3S) phase could be observed. But when the amount of total heavy metals is greater than 3%, significant decreases of C3S intensity could be observed. When the total amount increase to 6%, the intensity of C3S is only 80% relative to commercial cement. In summary, utilization of MSWI ash and heavy metal containing sludge is applicable if appropriate control of compositional parameters and heavy metal amount is applied.
     By adding 10%(w/w) of α-Al2O3 as internal standard to the NIST certificated reference material, X-ray powder diffraction (XRD) analysis is performed with short (1 hour) and long (8 hour) scanning time. The following crystalline quantification analysis show that the XRD profiles with scanning range of 15˚-75˚ (2θ), 0.03˚ per step, and 2s/step (short scanning time) are good enough for the following refinement. The crystalline quantification is performed with software package designed on quantitative Rietveld method basis; combinations of polymorphs of C3S are selected as initial model input for the refinement. The results show that both the RM and the RMT (rhombohedral, monoclinic and triclinic) combinations could cover all the variety of cements characterized by the three kinds of standard reference material. The cumulative relative error between the refined and certificated values is in the range of 7-23%. The method is stable to be used as crystalline quantification. Also, the amorphous weight percentage could be obtained by inverse derivation from the contents of α-Al2O3. In summary, combining the XRD operating condition described previously and the RMT combination for initial model in refinement, an optimal, fast and reliable crystalline quantification method is established. The established method could be used for the quantification of crystalline in future experiments.
     At last ,a full factorial experimental design is applied to three heavy metal oxides including CuO, NiO and ZnO. In the experiments three kinds of heavy metal oxide levels (1%, 3% and 5%) are tested. With adding heavy metal oxides, the simulated cement raw materials are sintered at 950, 1100, 1250 and 1400°C for 3 hours. The heavy metal oxide incorporation analyses of clinkers show that almost all the ZnO would evaporate during the sintering process. ZnO evaporated at 950-1100°C. On the other hand, 80-90% and 55-70% respectively of CuO and NiO would be retained in the clinkers. By means of crystalline quantification assisted with differential thermogravimetric analysis (TG/DTA), the addition of 3% heavy metal oxides could lower the liquid melting temperature and hence increase the amount of dicalcium silicate (C2S) formation. The ability of lowering liquid formation temperature is ZnO>CuO>NiO in sequence. NiO has almost no effect on the melting temperature lowering. The crystalline quantification analyses of 1400°C clinkers show that CuO and NiO would have statistically significant effect on the amount of the two major silicate phases (C2S and C3S) formed. Nevertheless, the total moles of silicates per unit weight of clinkers would not change. The total moles of silicates do not have statistically difference with respect to the addition of heavy metal oxide is added. The high temperature sintering system could be considered as in equilibrium, heavy metal oxides could not affect the partition ratio between C2S and C3S. The partition ratio in clinkers (C3S/C2S molar ratio) could be expressed as an empirical equation with amounts of CuO and NiO as parameters.
     In summary, the MSWI ash and heavy metal containing sludge could be utilized as alternative raw materials as long as appropriate controls on compositional adjustments and heavy metal thresholds are taken into consideration. If heavy metals were introduced into the raw material in low dosage, heavy metal would not affect the total amount of silicate phases. Instead the partition ratio between C2S and C3S would be altered. Empirical model developed in this study could be utilized as a reference for future modification of equation. Reuse of industrial inorganic wastes as alternative raw material for cement production could solve the dilemma in waste treatment and waste disposal.

    CONTENTS 中文摘要 I Abstract (英文摘要) IV Acknowledgement (誌謝) VIII Contents (目錄) IX List of Tables (表目錄) XIII List of Figures (圖目錄) XVII Chapter 1 Introduction 1 1-1. Background and purpose. 1 1-2. Content 3 Chapter 2 Recycling of industrial wastes for cement production 5 2-1. Introduction 5 2-1-1. Industrial wastes in Taiwan 5 2-1-2. Treatments and reuses of municipal solid waste incineration ashes 7 2-1-3. Treatments and reuses of heavy metal containing sludge 8 2-1-4. Purposes 10 2-2. Materials and methods 11 2-2-1. Materials 11 2-2-2. Procedures 12 2-2-3. Analysis 13 2-3. MSWI ash as cement raw mix replacement 14 2-3-1. Characteristics of municipal solid waste incineration ash 14 2-3-2. Unconfined compressive strength (UCS) of uncompressed raw material 17 2-3-3. Calcination with MR ash replacement 21 2-3-4. Compositional effect of ash replacement 23 2-3-5. Pretreated ashes as cement raw material replacement 26 2-3-6. Discussions 32 2-4. Heavy metal containing sludge as cement raw material replacement 33 2-4-1. Characteristics of metal containing sludge 33 2-4-2. XRD patterns of sintered clinkers 36 2-4-3. Effects of heavy metal concentrations 40 2-4-4. Toxicity leaching characteristics of clinkers 48 2-4-5. Discussions 49 2-5. Conclusions 50 Chapter 3 Quantitative XRD analysis of standard cements 52 3-1. Portland cement phase analysis 52 3-1-1. Bogue calculation 52 3-1-2. Microscopic point counting method 53 3-1-3. Quantitative X-ray diffraction analysis 54 3-1-4. Rietveld method 55 3-1-5. Purposes 56 3-2. Mathematical aspect and evaluation of Rietveld refinement 57 3-2-1. The method of least squares 57 3-2-2. Rietveld model 57 3-2-3. Polymorphs of calcium silicates 58 3-2-4. Goodness of fit and evaluation R-factor 66 3-3. Materials and methods 68 3-3-1. NIST SRM materials 68 3-3-2. Sample preparation and XRD analysis 68 3-3-3. Rietveld refinement 71 3-4. Results and discussions 72 3-4-1. Effects of diffractometer scanning parameters 72 3-4-2. Polymorphs identification approach 77 3-4-3. Approximate models 80 3-4-4. Amorphous content 86 3-5. Conclusions 89 Chapter 4 Influence of heavy metal oxide on major crystallines in cement clinkers 90 4-1. Introduction 90 4-1-1. Industrial wastes as raw material for Portland cement production 90 4-1-2. Effect of Zn oxide on the formation of clinkers 91 4-1-3. Effect of Cu oxide on the formation of clinkers 93 4-1-4. Effect of Ni oxide on the formation of clinkers 94 4-1-5. Quantitative Rietveld analysis 96 4-1-6. Purposes 98 4-2. Materials and methods 99 4-2-1. Factorial design 99 4-2-2. Material preparation 99 4-2-3. Procedures 100 4-2-4. Analysis 100 4-2-5. Parameters for Rietveld initial model inputs 101 4-3. Effects of heavy metal oxides at 1400°C 104 4-3-1. Incorporation of heavy metals 104 4-3-2. Quantitative Rietveld analysis of T4 clinkers 106 4-3-3. Effects of heavy metal oxides on crystalline phases 112 4-3-4. Empirical model for heavy metal oxides on the distribution of silicates 116 4-4. Effects of heavy metal oxides during the sintering 119 4-4-1. Incorporation of heavy metals 119 4-4-2. Quantitative Rietveld analysis of T2, T2 and T9 clinkers. 121 4-4-3. Crystalline formation during the sintering process. 126 4-4-4. Effect of heavy metal oxides on the crystalline formation. 129 4-4-5. Conclusions 133 Chapter 5 Conclusions and suggestions 134 5-1. Conclusions 135 5-2. Suggestions 137 References 140 自述 151 LIST OF TABLES Table 2-1. Reported industrial waste amount by IWCC 5 Table 2-2. Chloride and sulfate content of the MSWI ash within different size ranges 16 Table 2-3. Chemical compositions and concentrations of TCLP leachates of the experimental materials 16 Table 2-4. UCS of cement specimens made from clinkers produced at different pelletization pressure 20 Table 2-5. Effect of ash replacement on the UCS of cement specimens (with compression pelletization) 25 Table 2-6. Effects of pretreatments on chemical compositions of MR ash 28 Table 2-7. Uniaxial compressive strength (UCS) of clinkers sintered from raw materials with ash replacements 28 Table 2-8. Potential phase compositions of clinkers sintered from raw materials with ash replacements 30 Table 2-9. UCS of clinkers sintered from conditioned raw material 31 Table 2-10. Chemical composition of the experimental materials 34 Table 2-11. Heavy metal concentrations in TCLP leachates from sludges 34 Table 2-12. Composites and heavy metal concentrations of raw mixes 39 Table 3-1. Crystallography of C3S polymorphs (Reproduced from Taylor and et al.) 61 Table 3-2. Crystallography of C2S polymorphs (Reproduced from Taylor and et al.) 63 Table 3-3. Crystallography of polymorphs of minor phases 65 Table 3-4. Chemical compositions of standard reference material by NIST certificate. 69 Table 3-5. Phase compositions of standard reference materials by NIST certificate 69 Table 3-6. Instrument setting of X-ray Diffractometer 70 Table 3-7. Rietveld refinement results of SRM samples with different count time 73 Table 3-8. Effect of corundum addition on Rietveld refinement results of SRM samples 78 Table 3-9. Effect of model selection on Rietveld refinement results of SRM samples 83 Table 3-10. Full quantification of crystalline and amorphous materials presented in SRM sample 87 Table 4-1. Factorial design of experimental materials 99 Table 4-2. Instrument setting of X-ray Diffractometer 102 Table 4-3. Crystallography of polymorphs of refined phases 103 Table 4-4. Incorporation percentages of heavy metal oxides in T4 clinkers 105 Table 4-5a. Quantitative Rietveld analysis of clinkers with 6% heavy metal oxide addition and sintered at 1400°C 107 Table 4-5b. Quantitative Rietveld analysis of clinkers with 3% heavy metal oxide addition and sintered at 1400°C 108 Table 4-5c. Quantitative Rietveld analysis of clinkers with 1% heavy metal oxide addition and sintered at 1400°C 109 Table 4-6. Crystalline weight percentages in clinkers sintered at 1400°C 110 Table 4-7. Analysis of variance (ANOVA) for the amorphous contents in T4P1 clinkers 111 Table 4-8a. Analysis of variance for tricalcium silicate at 1400°C 114 Table 4-8b. Analysis of variance for dicalcium silicate at 1400°C 114 Table 4-9. Analysis of variance (ANOVA) for silicates regression 115 Table 4-10a. Analysis of variance (ANOVA) for tricalcium silicate (C3S) in T4P6 clinkers 117 Table 4-10b. ANOVA for C3S in T4P3 clinkers 117 Table 4-10c. ANOVA for C3S in T4P1 clinkers 117 Table 4-11a. Analysis of variance (ANOVA) for dicalcium silicate (C2S) in T4P6 clinkers 117 Table 4-11b. ANOVA for C2S in T4P3 clinkers (Insignificant) 117 Table 4-11c. ANOVA for C2S in T4P1 clinkers 117 Table 4-12. Analysis of variance for empirical regression model 118 Table 4-13. Potential phase composition of experimental bulk raw material 118 Table 4-14. Incorporation percentages of heavy metal oxides in P3 clinkers sintered at different temperatures 120 Table 4-15a. Quantitative Rietveld analysis of clinkers with 3% heavy metal oxide addition and sintered at 1250°C 123 Table 4-15b. Quantitative Rietveld analysis of clinkers with 3% heavy metal oxide addition and sintered at 1100°C and 950°C 124 Table 4-16. Crystalline weight percentages in clinkers with 3% of heavy metal oxide addition 125 Table 4-17a. Analysis of variance for C3S in T2P3 clinkers 131 Table 4-17b. Analysis of variance for C2S in T2P3 clinkers 131 LIST OF FIGURES Figure 2-1. The UCS of cement specimens with ash replacement at 3 days of curing 19 Figure 2-2. X-ray diffraction patterns of clinkers produced by compression pelletization at different pressure. a = alite, b = belite, t = tricalcium aluminate, c = calcium oxide 19 Figure 2-3. UCS of specimens with MR ash replacement (compression pelletization at 49 MPa) 22 Figure 2-4. X-ray diffraction patterns of cement clinker with MR ash replacement (compression pelletization at 49 MPa). a = alite, c = calcium oxide, t = tricalcium aluminate 22 Figure 2-5. XRD patterns of clinkers sintered from raw materials with ash replacements. (a) water- washed MR ash replacement, (b) EDTA extracted MR ash and (c) DMS MR ash. ■: Tricalcium silicate (C3S) ▲: Dicalcium silicate (C2S) ●: Tricalcium aluminate (C3A) ▼: Alumino-ferrite (C4AF) 29 Figure 2-6. XRD patterns of clinkers sintered from conditioned raw materials. ■: Tricalcium silicate (C3S) ▲: Dicalcium silicate (C2S) ●: Tricalcium aluminate (C3A) ▼: Alumino-ferrite (C4AF) 31 Figure 2-7. X-ray powder diffraction patterns of sintered clinkers (EPSC and SFSC) and ordinary portland cement (OPC). a = alite, b = belite, c = calcium oxide, m= calcium magnesium silicate, n = nickel oxide, p = calcium aluminium silicate, t = tricalcium aluminate 37 Figure 2-8. X-ray powder diffraction patterns of sintered clinkers with different sludge replacement. a = alite, b = belite, L = lithium fluoride, m = calcium magnesium silicate, n = nickel oxide, p = calcium aluminium silicate, t = tricalcium aluminate. *: Peaks selected for semiquantification analysis 41 Figure 2-9. Relative amounts of crystalline phases in clinkers compared with different EPSC raw mix replacement percentage 45 Figure 3-1. Phase transition of C3S upon temperature change 59 Figure 3-2. Phase transition of C2S upon temperature change 62 Figure 3-3. Refinement profiles of SRM 2687 with 4-hour counting time 76 Figure 3-4. Refinement profiles of SRM 2687 with 1-hour counting time 76 Figure 3-5. Refinement profiles of SRM 2686 79 Figure 3-6. Refinement profiles of SRM 2687 79 Figure 3-7. Refinement profiles of SRM 2688 79 Figure 3-8. GOF as function of models used to refine observed of SRM samples 84 Figure 3-9. T model refinement profile of SRM 2686 sample 84 Figure 3-10. Relationship between GOF and R(Riet-MPC)% of refined profiles 85 Figure 3-11. Relationship between GOF and R(Riet-Bogue)% of refined profiles 85 Figure 3-12. XRD profile of SRM 2686 87 Figure 3-13. XRD profile of SRM 2687 88 Figure 3-14. XRD profile of SRM 2688 88 Figure 4-1. The relationship between weight percentages of silicate phases and CaO 114 Figure 4-2. Moles of total silicates and CaO per kg of clinkers 115 Figure 4-3. Crystalline weight percentage of B1 clinker under different sintering temperatures. 126 Figure 4-4. Differential thermometry analysis (DTA) of B1 raw material. 128 Figure 4-5. Average crystalline weight percentage of P3 clinkers. 131 Figure 4-6. DTA and derivate of DTA of P3B1, P3B2 P3B3 and P3B5 raw materials ( :melting temperature; :C3S formation temperature) 141

    References
    [1] Statistical data table (2005), Industrial Waste Control Center, EPA, Taiwan.
    [2] C.S. Kirby, J.D. Rimstidt, Mineralogy and surface properties of municipal solid waste ash, Environ Sci Technol 27 (4) (1993) 652-650.
    [3] A. Kida, Y. Noma, T. Imada, Chemical speciation and leaching properties of elements in municipal incinerator ashes, Waste Manage 16 (5-6) (1996) 527-536.
    [4] V. Bruder-Hubscher, F. Lagarde, M.J.F. Leroy, C. Coughanowr, F. Enguehard, Application of a sequential extraction procedure to study the release of elements from municipal solid waste incineration bottom ash, Anal Chim Acta 451 (2) (2002) 285-295.
    [5] M. Singh, M. Garg, Making anhydrite cement from waste gypsum, Cem Concr Res 30 (4) (2000) 571-577.
    [6] A. Monshi, M.K. Asgarani, Producing Portland cement from iron and steel slags and limestone, Cem Concr Res 29 (9) (1999) 1373-1377.
    [7] M. Singh, S.N. Upadhayay, P.M. Prasad, Preparartion of special cements from red mud, Waste Manage 16 (8) (1996) 665-670.
    [8] P. Arjunan, M.R. Silsbee, D.M. Roy, Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products, Cem Concr Res 29 (8) (1999) 1305-1311.
    [9] R. Kikuchi, Recycling of municipal solid waste for cement production: pilot-scale test for transforming incineration ash of solid waste into cement clinker, Resour Conserv Recycl 31 (2) (2001) 137-147.
    [10] A.W. Bryson, K.A. Dardis, Treatment of dilute metal effluents in an electrolytic precipitator, Water (S Afr) 6 (1) (1980) 85-87.
    [11] J.W. Patterson, Effect of carbonate ion on precipitation treatment of cadmium, copper, lead and zinc, in: Proceeding of the 36th Annual Industrial Waste Conference, Purdue University, Lafayette, IN, 1981, 579-602.
    [12] S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, A review of potentially low-cost sorbents for heavy metals, Water Res 33 (11) (1999) 2469-2479.
    [13] E.H. Smith, A. Amini, Lead removal in fixed beds by recycled iron material, EE 126 (1) (2000) 58-65.
    [14] C.S. Brooks, Recovery of nonferrous metals from metal finishing industry wastes, Separation Sci Tech 28 (1-3) (1993) 579-593.
    [15] K. Ramachandran, N. Kikukawa, Thermal plasma in-flight treatment of electroplating sludge, IEEE Trans Plasma Sci 30 (1) (2002) 310-317.
    [16] M.G. James, J.K. Beattie, B.J. Kennedy, Recovery of chromate from electroplating sludge, Waste Mgmt Res 18 (4) (2000) 380-385.
    [17] P.H. Shih, J.E. Chang, L.C. Chiang, Replacement of raw mix in cement production by municipal solid waste incineration ash, Cem Concr Res 33 (11) (2003) 1831-1836.
    [18] A.M. Barros, J.A.S. Tenório, D.C.R. Espinosa, Chloride influence on the incorporation of Cr2O3 and NiO in clinker: a laboratory evaluation, J Hazard Mater B93 (2002) 221-232.
    [19] D.C.R. Espinosa, J.A.S. Tenório, Laboratory study of galvanic sludge’s influence on the clinkerization process, Resour Conserv Recycl 31 (2000) 71-82.
    [20] J. Caponero, J.A.S. Tenório, Laboratory testing of the use of phosphate-coating sludge in cement clinker, Resour Conserv Recycl 29 (2000) 169-179.
    [21] H.F.W. Taylor, Cement Chemistry, Academic Press, New York, 1990.
    [22] J.O. Odigure, Grindability of cement clinker from raw mix containing metallic particles, Cem Concr Res 29 (3) (1999) 303-307.
    [23] J.O. Odigure, Mineral composition and microstructure of clinker from raw mix containing metallic particles, Cem Concr Res 26 (8) (1996) 1171-1178.
    [24] H.A. van der Sloot, D.S. Kosson, O. Hjelmar, Characteristics, treatment and utilization of residues from municipal waste incineration, Waste Management 21 (8) (2001) 753-765.
    [25] K. Kolovos, S. Tsivilis, G. Kakali, The effect of foreign ions on the reactivity of the CaO–SiO2–Al2O3–Fe2O3 system Part II: Cations, Cem Concr Res 32 (3) (2002) 463-469.
    [26] D. Stephan, R. Mallmann, D. Knöfel, R. Härdtl, High intakes of Cr, Ni, and Zn in clinker Part I. Influence on burning process and formation of phases, Cem Concr Res 29 (1999) 1949-1957.
    [27] D. Stephan, H. Maleki, D. Knöfel, B. Eber, R. Härdtl, Influence of Cr, Ni, and Zn on the properties of pure clinker phases Part I. C3S, Cem Concr Res 29 (1999) 545-552.
    [28] D. Stephan, H. Maleki, D. Knöfel, B. Eber, R. Härdtl, Influence of Cr, Ni, and Zn on the properties of pure clinker phases Part II. C3A and C4AF, Cem Concr Res 29 (1999) 651–657.
    [29] ASTM C1356-96, Standard test method for quantitative determination of phases in portland cement clinker by microscopical point-count procedure.
    [30] A.A. Tabikh, R.J. Weht, An X-ray diffraction analysis of portland cement, Cem Concr Res 1 (1971) 317-328.
    [31] ASTM C1356-98, Standard test method for determination of the proportion of phases in portland cement and portland-cement clinker using X-ray powder diffraction analysis.
    [32] P.H. Shih, J.E. Chang, H.C. Lu, L.C. Chiang, Reuse of heavy metal containing sludges in cement production, submitted to Cem Concr Res (in review).
    [33] H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J Appl Cryst 2 (1971) 65-71.
    [34] R.J. Hill, C.J. Howard, Quantitative phase analysis from neutron powder diffraction data using the Rietveld method, J Appl Cryst 20 (1987) 20 467-474.
    [35] J.C., Taylor, L.P. Aldridge, Full-profile Rietveld quantitative XRD analysis of Portland cement: Standard XRD profiles for the major phase tricalcium silicate (C3S:3CaO.SiO2), Powder Diffraction 8 (1993) 138-144.
    [36] J.C. Taylor, L.P. Aldridge, Phase analysis of Portland cement by full profile standardless quantitative X-ray diffraction- Accuracy and precision, Advances in X-ray Analysis 36 (1993) 309-314.
    [37] W.G. Mumme, Crystal structure of tricalcium silicate from a Portland cement clinker and its application to quantitative XRD analysis, Neues Jahrb Mineral Monatsh (1995) 145-160.
    [38] H. Möller, Standardless quantitative phase analysis of Portland cement clinkers, World Cement September (1995) 75-84.
    [39] J.C. Taylor, I. Hinczak, C.E. Matulis, Rietveld full-profile quantification of Portland cement clinker: The importance of including a full crystallography of the major phase polymorphs, Powder Diffraction 15(1) (2000) 7-18.
    [40] R.A. Young, The Rietveld Method, Oxford University Press, New York, 1993.
    [41] F. Nishi, Y. Takeuchi, The rhombohedral structure of tricalcium silicate at 1200˚C, Z. Kristallogr. 168 (1984) 197-212.
    [42] A.M. Illinets, Y. Malinovskii, N.N. Nevskii, Dokl. Akad. Nauk SSSR 281 (1985) 332-336.
    [43] A.M. Illinets, M.Ya. Bikbau, N.A. Simanov, Crystal structure of the new rhombohedral modification of tricalcium silicate, Communication of the NII Cement 91 (1987) 3-42.
    [44] A.M. Illinets, M.Ya. Bikbau, XII European Crystallographic Meeting, Collected Abstracts, Moscow, 2 (1989) 77-78.
    [45] F. Nishi, Y. Takeuchi, I. Maki, Tricalcium silicate, Ca3O(SiO4): The monoclinic superstructure, Z. Kristallogr. 172 (1985) 297-314.
    [46] R. Golovastikov, R.G. Metveeva, N.V. Belov, Crystal structure of the tricalcium silicate 3CaO.SiO2=C3S, Sov. Phys. Crystallogr. 20 (1975) 441-445.
    [47] W.G.. Mumme, L. Cranswick, B. Chakoumakos, Rietveld crystal structure refinement from high temperature neutron powder diffraction data for the polymorphs of dicalcium silicate, Neues Jahrb. Mineral., 170 (1996) 171-188.
    [48] M. Catti, G. Gazzoni, G. Ivaldi, Order-disorder in the -(Ca,Sr)2SiO4 solid solution: A structural and statistical thermodynamic analysis, Acta Crystallogr., Sect. B: Struc. Sci. 40 (1984) 537-544.
    [49] A.M. Illinets, M.Ya. Bikbau, Structural mechanism of polymorphic transition of dicalcium silicate, Ca2SiO4. Part II: Refinement of crystal structure of high-temperature ’l modification of dicalcium silicate, Ca2SiO4, Sov. Phys. Crystallogr. 34 (1990) 54-56.
    [50] S. Udagawa, K. Urabe, K. Takada, M. Natsume, Studies on the dusting of Ca2SiO4—The crystal structure of ’l-Ca2SiO4, Cem. Assoc. Jpn. Rev. Gen. Meet. Tech. Sess 33 (1979) 35-38.
    [51] K.H. Jose, B. Ziemer, R. Seydel, Redetermination of the structure of -dicalcium silicate, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 33 (1977) 1696-1700.
    [52] R. Czaya, Refinement of the structure of -Ca2SiO4, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 27 (1971) 848-849.
    [53] G.W. Brindley, The effect of grain or particle size on X-ray reflection from mixed powder and alloys, considered in relation to the quantitative determination of crystalline substances by X-ray method, Phil. Mag. 36 (1945) 347-369.
    [54] P.S. Whitfield, L.D. Mitchell, Quantitative Rietveld analysis of the amorphous content in cement and clinkers, J. Mater. Sci. 38 (2003) 4415-4421.
    [55] W. Lerch, L.T. Brownmiller, J. Res. Nat. Bur. Stand. 18 (1937) 609.
    [56] Y. Takeuchi, F. Nishi, I. Maki, Crystal-chemical characterization of the (CaO)3•(Al2O3) -(Na2O) solid-solution series, Zeitschrift fuer Kristallographie 152 (1980) 259-307.
    [57] A.A. Colville, S. Geller, Crystal structures of Ca2Fe1.43Al0.57O5 and Ca2Fe1.28Al0.72O5, Acta Crystallogr. B 28 (1972) 3196-3200.
    [58] E.F. Bertaut, P. Blum, A. Sagnieres, Structure du Ferrite Bicalcique et de la Brownmillerite, Acta Crystallogr. 12 (1959) 149-159.
    [59] C.H. Shen, R.S. Liu, J.G. Lin, C.Y. Huang, Phase stability study of La1.2Ca1.8Mn2O7, Materials Research Bulletin 36 (2002) 1139-1148.
    [60] V.G. Tsirel'son, A.S. Avilov, Yu.A. Abramov, E.L. Belokoneva, R. Kitaneh, D. Feil, X-ray and electron diffraction study of MgO, Acta Crystallogr. B 54 (1998) 8-17.
    [61] J.A. McGinnety, Redetermination of the structures of potassium sulphate and potassium chromate: the effect of electrostatic crystal forces upon observed bond lengths, Acta Crystallogr. B 28 (1972) 2845-2852.
    [62] L.W. Finger, R.M. Hazen, Crystal structure and compression of ruby to 46 kbar, Journal of Applied Physics 49 (1978) 5823-5826.
    [63] R.S. Winburn, S.L. Lerach, B.R. Jarabek, M.A. Wisdom, D.G. Grier, G.J. McCarthy, Quantitative XRD analysis of coal combustion by-products by the Rietveld method. Testing with standard mixture, Adv. X-Ray Anal. 42 (2000) 387-396.
    [64] User’s Manual: TOPAS/TOPAS R/TOPAS P version 2.1, Bruker AXS GmbH, Karlsruhe, West Germany, 2003.
    [65] M. Özdemir, N.U. Öztürk, Utilization of clay wastes containing boron as cement additives, Cem Concr Res 33 (2003) 1659-1661.
    [66] P.E. Tsakiridis, S. Agatzini-Leonardou, P. Oustadakis, Red mud addition in the raw meal for the production of Portland cement clinker, J Hazard Mater B116 (2004) 103-110.
    [67] M.T. Blanco-Varala, F. Puertas, T. Vázquez, A. Palomo, Modeling of the burnability of white cement raw mixes made with CaF2 and CaSO4, Cem Concr Res 26 (3) (1996) 457-464.
    [68] A. Öztürk, Y. Suyadal, H. Oguz, The formation of belite phase by using phosphogysum and oil shale, Cem Concr Res 30 (2000) 967-971.
    [69] A.K. Öztürk, H. Oğuz, The formation of alite phase by using phosphogysum and oil shale, Cem Concr Res 34 (2004) 2079-2082.
    [70] M.A. Trezza, A.N. Scian, Burning wastes as an industrial resource. Their effect on Portland cement clinker, Cem Concr Res 30 (2000) 137-144.
    [71] M. Murat, F. Sorrentino, Effect of large addition of Cd, Pb, Cr, Zn to cement raw meal on the composition and the properties of the clinker and the cement, Cem Concr Res 26 (3) (1996) 377-385.
    [72] S. Sprung, Technological Problems in pyroprocessing cement clinker: Cause and solution, 1st ed., Benton-Verlag, Düsseldorf, 1985.
    [73] G. Kakali, G. Parissakis, Investigation of the effect of Zn oxide on the formation of Portland cement clinker, Cem Concr Res 25 (1) (1995) 79-85.
    [74] F.R.D. Andrade, V. Maringolo, Y. Kihara, Incorporation of V, Zn and Pb into the crystalline phases of Portland clinker, Cem Concr Res 33 (2003) 63-71.
    [75] J. Caponero , J.A.S. Tenório, Laboratory testing of the use of phosphate-coating sludge in cement clinker, Resour Conserv Recycl 29 (2000) 169–179. A.M. Barros, J.A.S. Tenório,
    [76] D.C.R. Espinosa, Evaluation of the incorporation ratio of ZnO, PbO and CdO into cement clinker, J Hazard Mater B112 (2004) 71-78.
    [77] Conselho Nacional de Meio Ambiente. CONAMA- Processo No. 2000.000299/99-13: Co-processamento de resíduos em fornos de clínquer. 1999.
    [78] P.G. Ract, D.C.R. Espinosa, J.A.S. Tenório, Determination of Cu and Ni incorporation ratios in Portland cement clinker, Waste Management 23 (2003) 281–285.
    [79] G. Kakali, G. Parissakis, D. Bouras, A study of the burnability and the phase formation of PC clinker containing Cu oxide, Cem Concr Res 26 (10) (1996) 1473-1478.
    [80] K. Kolovos, S.trivilis, G. Kakali, SEM examination of clinkers containing foreign elements, Cement & Concrete Composites 27 (2005) 163-170.S.
    [81] M. Frías, M.I.S. de Rojas, Total and soluble chromium, nickel and cobalt content in the main material used in the manufacturing of Spanish commercial cements, Cem Concr Res 32 (2002) 435-440.
    [82] A.M. Barros, D.C.R. Espinosa, J.A.S. Tenório, Effect of Cr2O3 and NiO additions on the phase transformations at high temperature in Portland cement, Cem Concr Res 34 (2004) 1795-1801.
    [83] T. Stanĕk, P. Sulovský, The influence of the alite polymorphism on the strength of the Portland cement, Cem Concr Res 32 (2002) 1169-175.
    [84] A. Hirano, R. Kanno, Y. Kawamoto, Y. Takeda, K. Yamaura, M. Takano, K. Ohyama, M. Ohashi, Y. Yamaguchi, Relationship between non-stoichiometry and physical properties in LiNiO2, Solid State Ionics 78 (1995) 123-131.
    [85] V. Massarotti, D. Capsoni, M. Bini, A. Altomare, A.G.G. Moliterni, X-ray powder diffraction ab initio structure solution of materials from solid state synthesis: the copper oxide case, Zeitschrift fuer Kristallographie 213 (1998) 259-265.
    [86] O. Garcia-Martinez, R.M. Rojas, E. Vila, J.L. Martin de Vidales, Microstructural characterization of nanocrystals of ZnO and CuO obtained from basic salts, Solid State Ionics 63 (1993) 442-449.
    [87] W.W. Schmahl, I.P. Swainson, M.T. Dove, A. Graeme-Barber, Landau free energy and order parameter behavior of the alpha/beta phase transition in cristobalite, Zeitschrift fuer Kristallographie 201 (1992) 125-145.

    下載圖示 校內:2008-05-12公開
    校外:2010-05-12公開
    QR CODE