| 研究生: |
龔鉑凱 Kung, Po-Kai |
|---|---|
| 論文名稱: |
具二硫化鉬/二氧化鉬二元奈米複合結構緩衝層材料之鈣鈦礦太陽能電池 MoS2/MoO2 hybrid nanostructure as advance solar cells buffer layer materials |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 二硫化鉬 、二氧化鉬 、鈣鈦礦太陽能電池 、複合奈米結構 、表面電位差 |
| 外文關鍵詞: | Molybdenum disulfide, Molybdenum dioxide, Perovskite solar cell, Hybrid nanostructure, Surface contact potential difference |
| 相關次數: | 點閱:153 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於此研究報告當中,我們將介紹可大面積生產、簡單並具有穩定再現性方法以製備三維複合型奈米結構材料。此三維複合材料含有二硫化鉬、三氧化鉬均勻分布於矽基板上,透過反應參數以及成核密度控制,我們能夠得到熱力學室溫穩定相並具有可控光電性質之高效能複合材料,本實驗將此複合物應用於鈣鈦礦太陽能電池之載子傳輸及緩衝層。
本實驗利用化學氣相沉積法氣化氧化鉬與硫粉前驅物,使其於高溫下產生氧化還原反應並擴散至經過酸洗後之矽晶圓表面成核成長成MoO2/MoS2複合材料。本實驗之變數主要著重於(1)經由改變不同前驅物位置以改變成核密度,並加入熱處理曲線設計,並研究材料之成長過程(2)將上述反應後試片以PC作為保護層轉移至鈣鈦礦電池之電子傳輸層表面後,量測其光電性質並探討其提升電池效率的提升與現象。
下一步將以上製程之材料與電池元件利用各種儀器進行光電性質及元件表現分析測試。主要使用儀器包含(1)表面形貌:光學顯微鏡(Optical microscopy, OM)、掃描式電子顯微鏡(Scanning electron microscopy, SEM)、穿透式電子顯微鏡(Transmission electron microscopy, TEM); (2)光電性質:光製發光光譜儀(Photoluminescence spectrometer)、紫外線/可見光光譜儀(Ultraviolet-Visible Spectrophotometer)、原子力顯微鏡(Atomic force microscope)、四點探針(Four point probe);(3)物理化學性質:拉曼光譜儀(4)材料晶體性質:X光繞射分析儀(X-ray diffraction meter)、穿透式電子顯微鏡(Transmission electron microscopy, TEM)。
經由OM與拉曼顯示,隨著成核密度與前驅物濃度改變,MoS2由塊狀分布成長為完整薄膜,在提高反應物濃度並加入急冷下有高導電率之單晶MoO2奈米柱生成,在經過四點探針測試電阻值後與表面光壓測試功函數我們選用具最低電阻值和功函數者製作太陽能電池與其他挑選之對照組製作電池,而電阻值最低者有最佳表現(10%PCE)。
MoS2/MoO2 binary nanocomposites as advance solar cells buffer layer materials
Po-Kai Kung, Jyh-Ming Ting*
Department of Materials Science and Engineering, National Cheng Kung University
SUMMARY
We use chemical vapor deposition for synthesisizing nano composites. With vapprized precousrs, the nucleation and growth happen under high temperature with chemical reaction and thus diffusion on top of silicon wafer. We focus on (1) changing relative location for changing nucleation density. Moreover, we apply extra design of heating curve for understanding the growth procedure. (2) as grown sample were mechanically transferred on top of TiO2 and followed by optical and electrical properties characterization. The final part is discussion of solar cell performance. Next is to characterize as grown samples and as fabricated cells. Iinstruments which were applied include: (1) Morphology: Optical microscopy, Scanning electron microscopy, Transmission electron microscopy. (2) Photovoltatic properties: Photoluminescence spectrometer, Ultraviolet-Visible Spectrophotometer, Atomic force microscope, Four point probe. (3) Physical and chemical properties: Raman spectrometer. (4) Material crystallinity: X-ray diffraction meter, TEM.
With the OM images and Raman spectrums, we observe that the MoS2 grown from distribution of isolated islands to continuous film by adjusting nucleation density and precursor concentration. Moreover, the single crystal MoO2 nanorod is synthesisized with higher reactant concentration and various cooling condition. After characterizing counductivity and surface work function by four point probe and KPFM. We pick the sample with lowest work function and hghest counductivity for solar cell calibration. The referencre cells were pick with different parameters. We found that the sample with lowest work function and highest counductivity shows the best efficiency (10%).
Keywords:Molybdenum disulfide, Molybdenum dioxide, Perovskite solar cell, Hybrid nanostructure, Surface contact potential difference
1. Manufacture Process and Future Technology Development of Various Solar Cells.
2. Newcomer Juices Up the Race to Harness Sunlight. Science, 2013. 342: p. 1438-1439.
3. Tao, L., et al., Silicene field-effect transistors operating at room temperature. Nat Nano, 2015. 10(3): p. 227-231.
4. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306: p. 666-669.
5. RadisavljevicB, et al., Single-layer MoS2 transistors. Nat Nano, 2011. 6(3): p. 147-150.
6. Bao, W., et al., High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Applied Physics Letters, 2013. 102(4): p. 042104.
7. Mak, K.F., et al., Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters, 2010. 105(13): p. 136805.
8. Peng, Q. and S. De, Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage. Physical Chemistry Chemical Physics, 2013. 15(44): p. 19427-19437.
9. Tsai, M.-L., et al., Monolayer MoS2 Heterojunction Solar Cells. ACS Nano, 2014. 8(8): p. 8317-8322.
10. Application of solar activated vechicle.pdf.
11. Yang, J., et al., Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO. Chemistry of Materials, 2015. 27(12): p. 4229-4236.
12. Leijtens, T., et al., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. 2013. 4: p. 2885.
13. Amani, M., et al., Near-unity photoluminescence quantum yield in MoS2. Science, 2015. 350: p. 1065-1068.
14. Jariwala, D., et al., Hybrid, Gate-Tunable, van der Waals p–n Heterojunctions from Pentacene and MoS2. Nano Letters, 2016. 16(1): p. 497-503.
15. Desai, S.B., et al., MoS2 transistors with 1-nanometer gate lengths. Science, 2016. 354: p. 99-102.
16. Sundaram, R.S., et al., Electroluminescence in Single Layer MoS2. Nano Letters, 2013. 13(4): p. 1416-1421.
17. Flöry, N., et al., A WSe2/MoSe2 heterostructure photovoltaic device. Applied Physics Letters, 2015. 107(12): p. 123106.
18. Peng, B., et al., Achieving Ultrafast Hole Transfer at the Monolayer MoS2 and CH3NH3PbI3 Perovskite Interface by Defect Engineering. ACS Nano, 2016. 10(6): p. 6383-6391.
19. Miyano, K., et al., Hysteresis, Stability, and Ion Migration in Lead Halide Perovskite Photovoltaics. The Journal of Physical Chemistry Letters, 2016. 7(12): p. 2240-2245.
20. Shi, Y., et al., Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity. Nano Letters, 2009. 9(12): p. 4215-4220.
21. Willson, R.C. and A.V. Mordvinov, Secular total solar irradiance trend during solar cycles 21–23. Geophysical Research Letters, 2003. 30(5): p. n/a-n/a.
22. < gueymard parameterized transmittance model for direct beam and circumsolar spectral irradiance >.
23. Laurentiu, F. and Y. Masafumi, eds. Advanced Solar Cell Materials, Technology, Modeling, and Simulation. 2013, IGI Global: Hershey, PA, USA. 1-354.
24. Smestad, G.P. and M. Gratzel, Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter. Journal of Chemical Education, 1998. 75(6): p. 752.
25. Qing, S., et al., Optical Absorption, Charge Separation and Recombination Dynamics in Pb and Sn/Pb Cocktail Perovskite Solar Cells and Their Relationships to the Photovoltaic Properties, in Perovskite Materials - Synthesis, Characterisation, Properties, and Applications, L. Pan and G. Zhu, Editors. 2016, InTech: Rijeka. p. Ch. 13.
26. Martinson, A.B.F., et al., New Architectures for Dye-Sensitized Solar Cells. Chemistry – A European Journal, 2008. 14(15): p. 4458-4467.
28. Fisher, A.C., et al., Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2 Solar Cells. The Journal of Physical Chemistry B, 2000. 104(5): p. 949-958.
29. Schlichthörl, G., et al., Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy. The Journal of Physical Chemistry B, 1997. 101(41): p. 8141-8155.
30. Kopidakis, N., et al., Ambipolar Diffusion of Photocarriers in Electrolyte-Filled, Nanoporous TiO2. The Journal of Physical Chemistry B, 2000. 104(16): p. 3930-3936.
31. Nelson, J., et al., Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes. Physical Review B, 2001. 63(20): p. 205321.
32. Johnston, M.B. and L.M. Herz, Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. Accounts of Chemical Research, 2016. 49(1): p. 146-154.
33. Shockley, W. and W.T. Read, Statistics of the Recombinations of Holes and Electrons. Physical Review, 1952. 87(5): p. 835-842.
34. Hall, R.N., Electron-Hole Recombination in Germanium. Physical Review, 1952. 87(2): p. 387-387.
35. Yang, Y., et al., Comparison of Recombination Dynamics in CH3NH3PbBr3 and CH3NH3PbI3 Perovskite Films: Influence of Exciton Binding Energy. The Journal of Physical Chemistry Letters, 2015. 6(23): p. 4688-4692.
36. <Deep Level Recombination in Semiconductors-lecture.pdf>.
37. O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353(6346): p. 737-740.
38. Yella, A., et al., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science, 2011. 334: p. 629-634.
39. Bach, U., et al., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998. 395(6702): p. 583-585.
40. Krüger, J., et al., High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Applied Physics Letters, 2001. 79(13): p. 2085-2087.
41. Krüger, J., et al., Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4′-dicarboxy-2,2′bipyridine)-bis(isothiocyanato) ruthenium(II). Applied Physics Letters, 2002. 81(2): p. 367-369.
42. Schmidt-Mende, L., S.M. Zakeeruddin, and M. Grätzel, Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic Ruthenium-dye. Applied Physics Letters, 2004. 86(1): p. 013504.
43. Schmidt-Mende, L., et al., Organic Dye for Highly Efficient Solid-State Dye-Sensitized Solar Cells. Advanced Materials, 2005. 17(7): p. 813-815.
44. Wang, M., et al., Efficient and Stable Solid-State Dye-Sensitized Solar Cells Based on a High-Molar-Extinction-Coefficient Sensitizer. Small, 2010. 6(2): p. 319-324.
45. Cai, N., et al., An Organic D-π-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells. Nano Letters, 2011. 11(4): p. 1452-1456.
46. Snaith, H.J. and M. Grätzel, Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-sensitized solar cells. Applied Physics Letters, 2006. 89(26): p. 262114.
47. Burschka, J., et al., Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2011. 133(45): p. 18042-18045.
48. Kudo, N., et al., Improvement of charge injection efficiency in organic-inorganic hybrid solar cells by chemical modification of metal oxides with organic molecules. Applied Physics Letters, 2007. 90(18): p. 183513.
49. Coakley, K.M., et al., Infiltrating Semiconducting Polymers into Self-Assembled Mesoporous Titania Films for Photovoltaic Applications. Advanced Functional Materials, 2003. 13(4): p. 301-306.
50. Zhu, R., et al., Highly Efficient Nanoporous TiO2-Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal-Free Organic Dye. Advanced Materials, 2009. 21(9): p. 994-1000.
51. Abrusci, A., et al., Influence of Ion Induced Local Coulomb Field and Polarity on Charge Generation and Efficiency in Poly(3-Hexylthiophene)-Based Solid-State Dye-Sensitized Solar Cells. Advanced Functional Materials, 2011. 21(13): p. 2571-2579.
52. Mor, G.K., et al., Visible to Near-Infrared Light Harvesting in TiO2 Nanotube Array−P3HT Based Heterojunction Solar Cells. Nano Letters, 2009. 9(12): p. 4250-4257.
53. Chang, J.A., et al., High-Performance Nanostructured Inorganic−Organic Heterojunction Solar Cells. Nano Letters, 2010. 10(7): p. 2609-2612.
54. Im, S.H., et al., Toward Interaction of Sensitizer and Functional Moieties in Hole-Transporting Materials for Efficient Semiconductor-Sensitized Solar Cells. Nano Letters, 2011. 11(11): p. 4789-4793.
55. Kim, H.-S., et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. 2012. 2: p. 591.
56. Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338: p. 643-647.
57. Noh, J.H., et al., Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters, 2013. 13(4): p. 1764-1769.
58. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
59. Im, J.-H., et al., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3(10): p. 4088-4093.
60. Etgar, L., et al., Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. Journal of the American Chemical Society, 2012. 134(42): p. 17396-17399.
61. Edri, E., et al., High Open-Circuit Voltage Solar Cells Based on Organic–Inorganic Lead Bromide Perovskite. The Journal of Physical Chemistry Letters, 2013. 4(6): p. 897-902.
62. Kamat, P.V., Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics. The Journal of Physical Chemistry Letters, 2013. 4(6): p. 908-918.
63. Smestad, G.P., et al., Priority publishing in Solar Energy Materials and Solar Cells. Solar Energy Materials and Solar Cells, 2010. 94(7): p. 1187-1190.
64. Park, N.-G., Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. The Journal of Physical Chemistry Letters, 2013. 4(15): p. 2423-2429.
65. Abou-Helal, M.O. and W.T. Seeber, Preparation of TiO2 thin films by spray pyrolysis to be used as a photocatalyst. Applied Surface Science, 2002. 195(1): p. 53-62.
66. Marichy, C., M. Bechelany, and N. Pinna, Atomic layer deposition of nanostructured materials for energy and environmental applications. Advanced Materials, 2012. 24(8): p. 1017-1032.
67. Ito, S., et al., Conductive and Transparent Multilayer Films for Low-Temperature-Sintered Mesoporous TiO2 Electrodes of Dye-Sensitized Solar Cells. Chemistry of Materials, 2003. 15(14): p. 2824-2828.
68. Dharani, S., et al., High efficiency electrospun TiO2 nanofiber based hybrid organic-inorganic perovskite solar cell. Nanoscale, 2014. 6(3): p. 1675-1679.
69. Kim, H.-S., et al., High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer. Nano Letters, 2013. 13(6): p. 2412-2417.
70. Salazar, R., et al., Use of Anodic TiO2 Nanotube Layers as Mesoporous Scaffolds for Fabricating CH3NH3PbI3 Perovskite-Based Solid-State Solar Cells. ChemElectroChem, 2015. 2(6): p. 824-828.
71. Gao, X., et al., Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films. Chemical Communications, 2014. 50(48): p. 6368-6371.
72. Mahmood, K., B.S. Swain, and A. Amassian, Core-shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells. Nanoscale, 2015. 7(30): p. 12812-12819.
73. Wu, W.-Q., et al., Thin Films of Dendritic Anatase Titania Nanowires Enable Effective Hole-Blocking and Efficient Light-Harvesting for High-Performance Mesoscopic Perovskite Solar Cells. Advanced Functional Materials, 2015. 25(21): p. 3264-3272.
74. Li, J.-F., et al., Effect of solvents on the growth of TiO2 nanorods and their perovskite solar cells. Journal of Materials Chemistry A, 2015. 3(38): p. 19476-19482.
75. Lee, J.-W., et al., Rutile TiO2-based perovskite solar cells. Journal of Materials Chemistry A, 2014. 2(24): p. 9251-9259.
76. Chia, X., et al., Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. Chemical Reviews, 2015. 115(21): p. 11941-11966.
77. Mattheiss, L.F., Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. Physical Review B, 1973. 8(8): p. 3719-3740.
78. Wei, R., et al., Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets. Nanotechnology, 2016. 27(30): p. 305203.
79. Bellani, S., et al., Few-layer MoS2 flakes as a hole-selective layer for solution-processed hybrid organic hydrogen-evolving photocathodes. Journal of Materials Chemistry A, 2017. 5(9): p. 4384-4396.
80. Capasso, A., et al., Few-Layer MoS2 Flakes as Active Buffer Layer for Stable Perovskite Solar Cells. Advanced Energy Materials, 2016. 6(16): p. 1600920-n/a.
81. <Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity.pdf>.
82. Kumar Sen, U., A. Shaligram, and S. Mitra, Intercalation Anode Material for Lithium Ion Battery Based on Molybdenum Dioxide. ACS Applied Materials & Interfaces, 2014. 6(16): p. 14311-14319.
83. Choi, H., et al., Facile scalable synthesis of MoO2 nanoparticles by new solvothermal cracking process and their application to hole transporting layer for CH3NH3PbI3 planar perovskite solar cells. Chemical Engineering Journal, 2017. 310, Part 1: p. 179-186.
84. Zeng, L., et al., MoO2-Ordered Mesoporous Carbon Nanocomposite as an Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013. 5(6): p. 2182-2187.
85. Zhang, H.-J., et al., MoO2/Mo2C Heteronanotubes Function as High-Performance Li-Ion Battery Electrode. Advanced Functional Materials, 2014. 24(22): p. 3399-3404.
86. Niu, L., et al., Production of Two-Dimensional Nanomaterials via Liquid-Based Direct Exfoliation. Small, 2016. 12(3): p. 272-293.
87. Dines, M.B., Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides. Materials Research Bulletin, 1975. 10(4): p. 287-291.
88. Joensen, P., R.F. Frindt, and S.R. Morrison, Single-layer MoS2. Materials Research Bulletin, 1986. 21(4): p. 457-461.
89. Ambrosi, A., Z. Sofer, and M. Pumera, Lithium Intercalation Compound Dramatically Influences the Electrochemical Properties of Exfoliated MoS2. Small, 2015. 11(5): p. 605-612.
90. Ilanchezhiyan, P., G. Mohan Kumar, and T.W. Kang, Electrochemical studies of spherically clustered MoS2 nanostructures for electrode applications. Journal of Alloys and Compounds, 2015. 634: p. 104-108.
91. Ramadoss, A., et al., Enhanced activity of a hydrothermally synthesized mesoporous MoS2 nanostructure for high performance supercapacitor applications. New Journal of Chemistry, 2014. 38(6): p. 2379-2385.
92. Ling, Z.P., et al., Large-scale two-dimensional MoS(2) photodetectors by magnetron sputtering. Opt Express, 2015. 23(10): p. 13580-6.
93. Loh, T.A.J. and D.H.C. Chua, Growth Mechanism of Pulsed Laser Fabricated Few-Layer MoS2 on Metal Substrates. ACS Applied Materials & Interfaces, 2014. 6(18): p. 15966-15971.
94. Serrao, C.R., et al., Highly crystalline MoS2 thin films grown by pulsed laser deposition. Applied Physics Letters, 2015. 106(5): p. 052101.
95. Siegel, G., et al., Growth of centimeter-scale atomically thin MoS2 films by pulsed laser deposition. APL Materials, 2015. 3(5): p. 056103.
96. Zhan, Y., et al., Large-Area Vapor-Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate. Small, 2012. 8(7): p. 966-971.
97. Kong, D., et al., Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Letters, 2013. 13(3): p. 1341-1347.
98. Lin, Y.-C., et al., Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012. 4(20): p. 6637-6641.
99. Wang, X., et al., Controlled Synthesis of Highly Crystalline MoS2 Flakes by Chemical Vapor Deposition. Journal of the American Chemical Society, 2013. 135(14): p. 5304-5307.
100. Liu, K.-K., et al., Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Letters, 2012. 12(3): p. 1538-1544.
101. Wu, S., et al., Vapor–Solid Growth of High Optical Quality MoS2 Monolayers with Near-Unity Valley Polarization. ACS Nano, 2013. 7(3): p. 2768-2772.
102. Lee, Y.-H., et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012. 24(17): p. 2320-2325.
103. Lee, Y.-H., et al., Synthesis and Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces. Nano Letters, 2013. 13(4): p. 1852-1857.
104. Ling, X., et al., Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition. Nano Letters, 2014. 14(2): p. 464-472.
105. Najmaei, S., et al., Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater, 2013. 12(8): p. 754-759.
106. van der Zande, A.M., et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater, 2013. 12(6): p. 554-561.
107. Xiao, D., et al., Nanocarved MoS2–MoO2 Hybrids Fabricated Using in Situ Grown MoS2 as Nanomasks. ACS Nano, 2016. 10(10): p. 9509-9515.
108. 林麗娟, X光繞射原理及其應用, in 工業材料86期. 1994. p. 100-109.
109. Lang, N.D. and W. Kohn, Theory of Metal Surfaces: Work Function. Physical Review B, 1971. 3(4): p. 1215-1223.
110. Campbell, I.H., et al., Direct Measurement of Conjugated Polymer Electronic Excitation Energies Using Metal/Polymer/Metal Structures. Physical Review Letters, 1996. 76(11): p. 1900-1903.
111. Surplice, N.A. and R.J.D. Arcy, A critique of the Kelvin method of measuring work functions. Journal of Physics E: Scientific Instruments, 1970. 3(7): p. 477.
112. Nonnenmacher, M., M.P. O’Boyle, and H.K. Wickramasinghe, Kelvin probe force microscopy. Applied Physics Letters, 1991. 58(25): p. 2921-2923.
113. Bluhm, H., T. Inoue, and M. Salmeron, Formation of dipole-oriented water films on mica substrates at ambient conditions. Surface Science, 2000. 462(1): p. L599-L602.
114. Melitz, W., et al., Kelvin probe force microscopy and its application. Surface Science Reports, 2011. 66(1): p. 1-27.
115. Nagpure, S.C., B. Bhushan, and S.S. Babu, Surface potential measurement of aged Li-ion batteries using Kelvin probe microscopy. Journal of Power Sources, 2011. 196(3): p. 1508-1512.
116. <semiconductior material and device characterization.pdf>.
117. 羅聖全, 林., 場發射穿透式電子顯微鏡簡介. 2003.
118. Yu, Y., et al., Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films. 2013. 3: p. 1866.
119. Zhang, J., et al., Scalable Growth of High-Quality Polycrystalline MoS2 Monolayers on SiO2 with Tunable Grain Sizes. ACS Nano, 2014. 8(6): p. 6024-6030.
120. <Handbook-of-Chemical-Vapor-Deposition.pdf>.
121. Bertrand, P.A., Surface-phonon dispersion of MoS2. Physical Review B, 1991. 44(11): p. 5745-5749.
122. Li, H., et al., From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Advanced Functional Materials, 2012. 22(7): p. 1385-1390.
123. Frey, G.L., et al., Raman and resonance Raman investigation of MoS2 nanoparticles. Physical Review B, 1999. 60(4): p. 2883-2892.
124. Splendiani, A., et al., Emerging Photoluminescence in Monolayer MoS2. Nano Letters, 2010. 10(4): p. 1271-1275.
125. Ramakrishna Matte, H.S.S., et al., MoS2 and WS2 Analogues of Graphene. Angewandte Chemie International Edition, 2010. 49(24): p. 4059-4062.
126. Sekine, T., et al., Dispersive Raman Mode of Layered Compound 2H-MoS2 under the Resonant Condition. Journal of the Physical Society of Japan, 1984. 53(2): p. 811-818.
127. Livneh, T. and E. Sterer, Resonant Raman scattering at exciton states tuned by pressure and temperature in 2H MoS2. Physical Review B, 2010. 81(19): p. 195209.
128. Ho, C.H., et al., Temperature dependence of energies and broadening parameters of the band-edge excitons of Mo1-XWXS2 single crystals. Journal of Physics: Condensed Matter, 1998. 10(41): p. 9317.
129. Gołasa, K., et al., Resonant Raman scattering in MoS2—From bulk to monolayer. Solid State Communications, 2014. 197: p. 53-56.
130. Chakraborty, B., et al., Layer-dependent resonant Raman scattering of a few layer MoS2. Journal of Raman Spectroscopy, 2013. 44(1): p. 92-96.
131. Lin, Z., et al., Controllable Growth of Large–Size Crystalline MoS2 and Resist-Free Transfer Assisted with a Cu Thin Film. 2015. 5: p. 18596.
132. Schrader, G.L. and C.P. Cheng, In situ laser raman spectroscopy of the sulfiding of Moγ-Al2O3 catalysts. Journal of Catalysis, 1983. 80(2): p. 369-385.
133. Payen, E., et al., Genesis and characterization by laser Raman spectroscopy and high-resolution electron microscopy of supported molybdenum disulfide crystallites. The Journal of Physical Chemistry, 1989. 93(17): p. 6501-6506.
134. Coehoorn, R., et al., Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Physical Review B, 1987. 35(12): p. 6195-6202.
135. Coehoorn, R., C. Haas, and R.A. de Groot, Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Physical Review B, 1987. 35(12): p. 6203-6206.
136. Shigegaki, Y., et al., Thermal analysis and kinetics of oxidation of molybdenum sulfides. Journal of thermal analysis, 1988. 34(5): p. 1427-1440.
137. Grzella, J., et al., Metallurgical Furnaces, in Ullmann's Encyclopedia of Industrial Chemistry. 2000, Wiley-VCH Verlag GmbH & Co. KGaA.
138. Gubbala, S., et al., Band-Edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells Based on SnO2 Nanowires. Advanced Functional Materials, 2008. 18(16): p. 2411-2418.
139. Brattain, W.H. and J. Bardeen, Surface Properties of Germanium. Bell System Technical Journal, 1953. 32(1): p. 1-41.
140. Dieter, K.S., Surface voltage and surface photovoltage: history, theory and applications. Measurement Science and Technology, 2001. 12(3): p. R16.
校內:2022-08-01公開