簡易檢索 / 詳目顯示

研究生: 周昕妤
Chou, Hsin-Yu
論文名稱: 應用擔載Na+的Y型沸石觸媒於三酸甘油酯轉酯化反應以製備生質柴油之研究
Transesterification of Triglycerides for Biodiesel Production using Na+ loaded Zeolite Y Catalysts
指導教授: 陳炳宏
Chen, Bing-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 101
中文關鍵詞: 生質柴油轉酯化反應沸石三酸甘油酯
外文關鍵詞: Biodiesel production, Transesterification, Zeolite, Triolein, Methyl oleate
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生質柴油的發展已日漸受到重視,為了解決近年來價格不斷飆升的石油問題以及燃燒石化柴油所造成的廢氣汙染,替代性能源的開發也越來越重要。使用生質柴油有很多益處,如無毒可再生、二氧化碳淨排放量為零、具生物可降解之特性等等,因此受到世界各國的青睞。生質柴油的原料通常為植物油脂,經過轉酯化反應後即可生成脂肪酸酯混合物即為生質柴油。
    轉酯化反應必須藉由觸媒的催化才能進行,本研究以沸石作為轉酯化反應的觸媒,然其直接使用的轉酯化結果不好,因此本實驗預期可藉由添加鈉離子來增加反應性,並藉由改變不同反應參數如鈉含量、鈉來源、離子交換時間等變數來找出轉酯化反應之最佳化條件。
    從本研究結果來看,使用鈉離子附載於沸石觸媒並催化轉酯化反應之效果良好:以不同鈉來源如氫氧化鈉、氯化鈉及硫酸鈉在觸媒上進行改質的結果,以氫氧化鈉的結果最好;使用以氫氧化鈉作為鈉離子來源,加入4 wt %的鈉濃度並離子交換0.5小時後進行轉酯化反應,1小時後即可得到90 %以上的產率。而除了鈉濃度的改變,離子交換時間也是觸媒改質的重要因素之一,在相同鈉來源及相同鈉濃度的條件下,離子交換時間越短,所得到的鈉含量雖然有些微的下降,但並無顯著的影響。

    Development of renewable energy such as biodiesel has gained more and more attention from researchers in recent years, to replace the depleting fossil fuels and to alleviate environmental impacts arising from over-consumption of these fossil fuels. Biodiesel has been extensively developed, as it is known to possess many advantages, for example, sustainability and renewability, possibility in carbon neutralization, and biodegradability. Commonly, biodiesel is produced from catalyzed transesterification of vegetable oils with methanol or ethanol.
    In this study, sodium-loaded zeolites are employed to catalyze transesterification reaction of triolein in excess methanol. Sodium ions are doped to mesoprous zeolites mainly via ion-exchange and impregnation. Various factors in surface modification of zeolites, such as sodium concentrations and sources as well as process time, are carefully studied. We have found that sodium ions loaded to zeolites can significantly improve the degree of transesterification of triolein, depending on the sources of sodium ions. For example, NaOH gives the best outcome in transesterification of triolein, compared with sodium chloride and sodium sulfate. Zeolites with sodium ion-exchange for 0.5 hours with a loading of 4 wt% Na+ based on the mass of zeolite lead a production yield of biodiesel more than 90%

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 5 第二章 文獻回顧 7 2-1生質柴油的開發 7 2-1-1生質柴油之緣由 7 2-1-2生質柴油的優缺點及改善方式 8 2-2生質柴油的發展 14 2-2-1生質柴油的原料跟製造 14 2-2-2生質柴油的特性 20 2-2-3生質柴油的規範及標準 25 2-2-4生質柴油的國內外發展趨勢 29 2-3轉酯化反應 33 2-3-1鹼催化 34 2-3-2酸催化 37 2-4沸石觸媒 38 2-4-1沸石之發展 38 2-4-2沸石的組成與結構 40 2-4-3沸石的特性與應用 43 2-4-4沸石觸媒之製備方法 45 第三章 實驗 46 3-1研究架構及流程 46 3-2實驗藥品 47 3-3實驗設備及原理 49 3-3-1 GC 50 3-3-2 SEM表面型態觀察 51 3-3-3 EDS表面元素分析 52 3-3-4 AA原子吸收光譜儀 53 3-3-5 ICP感應耦合電漿原子發射光譜儀 54 3-3-6 XRD晶相分析 55 3-4實驗方法 56 3-4-1觸媒預處理 56 3-4-2脂肪酸甲酯檢量線的製作 56 3-4-3轉酯化反應 56 3-4-4脂肪酸甲酯產率分析 57 3-4-5觸媒回收再利用 57 3-4-6固體觸媒分析 57 第四章 結果與討論 58 4-1觸媒催化生產生質柴油之可行性分析 58 4-2 檢量線製作 60 4-2-1利用GC製作檢量線 60 4-2-2利用GC與NMR製作檢量線的比較 61 4-3觸媒改質 65 4-3-1鈉來源對觸媒改質的影響 65 4-3-2鈉濃度對觸媒改質的影響 66 4-3-3 pH值對觸媒改質的影響 69 4-3-4離子交換時間對觸媒改質的影響 71 4-3-5含浸法對觸媒改質的影響 73 4-4反應參數探討 75 4-4-1使用未改質觸媒進行轉酯化反應之結果 75 4-4-2反應動力實驗 76 4-4-3不同鈉來源改質觸媒對轉酯化反應的影響 83 4-4-4不同鈉濃度改質觸媒對轉酯化反應的影響 85 4-4-5離子交換時間對轉酯化反應的影響 87 4-4-6含浸法對轉酯化反應的影響 88 4-5觸媒回收再利用 89 第五章 結論 92 5-1結論 92 5-2建議 94 參考資料 95

    Alcantara, R.; Amores, J.; Canoira, L.; Fidalgo, E.; Franco, M.J.; Navarro, A. Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass and Bioenergy.18(6):515-527. 2000

    Azcan, N.; Danisman, A. Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel.86(17–18):2639-2644. 2007

    Atadashi, I.M.; Aroua, M.K.; Abdul Aziz, A.R.; Sulaiman, N.M.N. Production of biodiesel using high free fatty acid feedstocks. Renewable and Sustainable Energy Reviews.;16(5):3275-3285. 2012

    Breck, D.W. Zeolite molecular sieves. Wiley, New York. 1974.

    Barrer, R.M. Hydrothermal chemistry of zeolites. Academic Press. 1982

    Butterworths. London, 1992.http://www.iza-online.org/.

    Baek, S.; Kim, J.; Ihm, S. Design of metal loaded zeolites as dual functional adsorbent/catalyst system for VOC control. In: E. van Steen, M.C.; Callanan, L.H., editors. Vol. Volume 154, Part C, Studies in Surface Science and Catalysis: Elsevier. p. 2458-2466. 2004

    B. Strzemiecka, Adam Voelkel, Małgorzata Kasperkowiak, Characterization of zeolites as potential new generation fillers in abrasive articles. Physicochemical properties of zeolites and their interactions with resins, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 372, pp. 80-85, 2010.

    Clive E. Harland. Ion exchange Theory and Practice. Royal Society of Chemistry Paperbacks. 2nd ed, USA. 1994

    Corma, A.; Nemeth, L.T.; Renz, M.; Valencia, S. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations. Nature. 412(6845):423-425. 2001.

    Colella, C.; Gualtieri, A.F. Cronstedt’s zeolite. Microporous and Mesoporous Materials.105(3):213-221. 2007.

    Christian Baerlocher,Ch. Baerlocher,Lynne B. McCusker,David Olson. Altas of Zeolite Structure types. International Zeolite Association. Structure Commission. Elsevier, 2007

    C. Perego and A. Bosetti, Biomass to fuels: The role of zeolite and mesoporous materials, Microporous and Mesoporous Materials, vol. 144, pp. 28-39, 2011.

    C. A. Ríos R, Oviedo V, Jenny Andrea, Henao M, José Antonio, Macías L, Mario Alberto, A NaY zeolite synthesized from Colombian industrial coal by-products: Potential catalytic applications, Catalysis Today, vol. 190, pp. 61-67, 2012.

    Damour, A. Min J Annu. 17:191. 1840

    Demirbas, A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science. 31(5–6):466-487. 2005.

    Demirbas, A. Importance of biodiesel as transportation fuel. Energy Policy. 35(9):4661-4670. 2007.

    European Buodiesel Board, http://www.ebb-eu.org/stats.php

    Freedman, B.; Pryde, E.; Mounts, T. Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists' Society. 61(10):1638-1643. 1984.

    Fukuda, H.; Kondo, A.; Noda, H. Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering. 92(5):405-416. 2001.
    Felizardo, P.; Neiva Correia, M.J.; Raposo, I.; Mendes, J.F.; Berkemeier, R.; Bordado, J.M. Production of biodiesel from waste frying oils. Waste Management. 26(5):487-494. 2006.

    Gelbard, G.; Brès, O.; Vargas, R.; Vielfaure, F.; Schuchardt, U. <sup>1</sup>H nuclear magnetic resonance determination of the yield of the transesterification of rapeseed oil with methanol. Journal of the American Oil Chemists' Society. 72(10):1239-1241. 1995.

    Georgogianni, K.G.; Kontominas, M.G.; Tegou, E.; Avlonitis, D.; Gergis, V. Biodiesel Production:  Reaction and Process Parameters of Alkali-Catalyzed Transesterification of Waste Frying Oils. Energy & Fuels. 21(5):3023-3027. 2007.

    Huang, G.; Chen, F.; Wei, D.; Zhang, X.; Chen, G. Biodiesel production by microalgal biotechnology. Applied Energy. 87(1):38-46. 2010.

    Jens, W. Zeolites and catalysis. Solid State Ionics. 131(1-2):175-188. 2000.

    J. Weitkamp, Fuels — Hydrogen Storage | Zeolites, in Encyclopedia of Electrochemical Power Sources, G. Editor-in-Chief: Jürgen, Ed., ed Amsterdam: Elsevier, pp. 497-503. 2009.

    J. Coronas, Present and future synthesis challenges for zeolites, Chemical Engineering Journal, vol. 156, pp. 236-242, 2010.

    Kusdiana, D.; Saka, S. Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel. 80(5):693-698. 2001.

    Kalligeros, S., Zannikos, F., Stournas, S., Lois, E., Anastopoulos, G., Teas, Ch, Sakellaropoulos, F. An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine. Biomass and Bioenergy. 24(2):141-149. 2003.

    Knothe, G.; Steidley, K.R. Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel. 84(9):1059-1065. 2005.
    Lang, X.; Dalai, A.K.; Bakhshi, N.N.; Reaney, M.J.; Hertz, P.B. Preparation and characterization of bio-diesels from various bio-oils. Bioresource Technology. 80(1):53-62. 2001.

    Lotero, E.; Liu, Y.; Lopez, D.E.; Suwannakarn, K.; Bruce, D.A.; Goodwin, J.G. Synthesis of Biodiesel via Acid Catalysis. Industrial & Engineering Chemistry Research.44(14):5353-5363. 2005.

    Leung, D.Y.C.; Wu, X.; Leung, M.K.H. A review on biodiesel production using catalyzed transesterification. Applied Energy. 87(4):1083-1095. 2010.

    Lam, M.K.; Lee, K.T.; Mohamed, A.R. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances. 28(4):500-518. 2010.

    McBain, J.W. The Sorption of Gases and Vapours by Solids. Routledge, London 79. 1932.

    Ma, F.; Hanna, M.A. Biodiesel production: a review. Bioresource Technology. 70(1):1-15. 1999.

    Ma, F.; Clements, L.D.; Hanna, M.A. The effect of mixing on transesterification of beef tallow. Bioresource Technology.69(3):289-293. 1999.

    Meher, L.C.; Vidya Sagar, D.; Naik, S.N. Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews. 10(3):248-268. 2006.

    McCormick, R.L.; Ratcliff, M.; Moens, L.; Lawrence, R. Several factors affecting the stability of biodiesel in standard accelerated tests. Fuel Processing Technology.88(7):651-657. 2007.

    Marchetti, J.M. A summary of the available technologies for biodiesel production based on a comparison of different feedstock's properties. Process Safety and Environmental Protection. 90(3):157-163. 2012.

    Niehaus RA., G.C., Savage LD., Jr. Sorenson SC. Cracked soybean oil as a fuel for a diesel engine. Transactions of the ASAE. 29:683-689. 1986.

    Öhman, L.O.; Ganemi, B.; Björnbom, E.; Rahkamaa, K.; Keiski, R.L.; Paul, J. Catalyst preparation through ion-exchange of zeolite Cu-, Ni-, Pd-, CuNi- and CuPd-ZSM-5. Materials Chemistry and Physics. 73(2–3):263-267. 2002.

    Pine, L.A.; Maher, P.J.; Wachter, W.A. Prediction of cracking catalyst behavior by a zeolite unit cell size model. Journal of Catalysis. 85(2):466-476. 1984.

    Pinna, F. Supported metal catalysts preparation. Catalysis Today. 41(1–3):129-137. 1998.

    Schwab AW., D.G., Selke E., Sorenson SC., Pryde EH. Diesel fuel from thermal decomposition of soybean oil, . Journal of the American Oil Chemists’ Society, 65, 1781-1786. 1988.

    Shay, E.G. Diesel fuel from vegetable oils: Status and opportunities. Biomass and Bioenergy. 4(4):227-242. 1993.

    Santori, G.; Di Nicola, G.; Moglie, M.; Polonara, F. A review analyzing the industrial biodiesel production practice starting from vegetable oil refining. Applied Energy. 92(0):109-132. 2012.

    Yan Shuli, M.K., Steve O. Salley, John Wilson, and K. Y. Simon Ng. Reaction Kinetics of Soybean Oil Transesterification at High Temperature. National Biofuels Energy Laboratory, NextEnergy/Wayne State University, Detroit, 2008.

    Tashtoush, G.M.; Al-Widyan, M.I.; Al-Jarrah, M.M. Experimental study on evaluation and optimization of conversion of waste animal fat into biodiesel. Energy Conversion and Management. 45(17):2697-2711. 2004.

    Taguchi, A.; Schüth, F. Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials. 77(1):1-45. 2005.
    Tan, T.; Lu, J.; Nie, K.; Deng, L.; Wang, F. Biodiesel production with immobilized lipase: A review. Biotechnology Advances. 28(5):628-634. 2010.

    University of Idaho (Department of Biological and Agricultural Engineering), Biodegradability of biodiesel in the aquatic environment. development of rapeseed biodiesel for use in high-speed diesel engine, Progress report, 96-116, 1996.

    University of Idaho (Department of Biological and Agricultural Engineering), Acute toxicity of biodiesel to freshwater and marine organisms. development of rapeseed biodiesel for use in high-speed diesel engine, Progress report, 117-131, 1996.

    United States of Department Agriculture, http://www.usda.gov/wps/portal/usda/usdahome

    Van der Waal, J.C.; van Bekkum, H. Molecular Sieves, Multifunctional Microporous Materials in Organic Synthesis. Journal of Porous Materials. 5(3):289-303. 1998.

    Vicente, G.; Martı́nez, M.; Aracil, J. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology. 92(3):297-305. 2004.

    William H. Flank .Perspectives in Molecular Sieve Science. Analytical Chemistry. 61(4):282A-282A. 1989.

    Weitkamp, J. Zeolites and catalysis. Solid State Ionics. 131(1–2):175-188. 2000.

    Ye, J.; Tu, S.; Sha, Y. Investigation to biodiesel production by the two-step homogeneous base-catalyzed transesterification. Bioresource Technology. 101(19):7368-7374. 2010.

    徐如人,龐文琴,屠昆崗. 沸石分子篩的結構與合成. 吉林大學出版. 1987.

    許炎和. 基礎氣相色層分析. 國興出版社. 1987.

    吳榮宗. 工業觸媒概論增訂版. 國興出版社. 1989.

    陳介武. 拯救地球環保系列報導─生質柴油發展與趨勢.美國黃豆出口協會台灣辦事處, http://www.asaim.org.tw/texh6-3.htm. 2000年.

    張冠杰, 朱建良. 國內外生質柴油研究生產現狀及發展趨勢. 化工期刊. 18(1). 2004.

    李昌珠、蔣麗娟、程樹棋. 生物柴油--綠色能源,化學工業出版社. 2007年1月.

    吳謀成. 生物柴油,化學工業出版社. 2008年1月.

    霍俊文,以硫酸處理之二氧化鋯觸媒對於游離脂肪酸甲酯化反應之研究,國立成功大學化學工程學系碩士論文,2010

    詹逸涵,Amberlite IR-120陽離子交換樹脂於游離脂肪酸甲酯化之研究,國立成功大學化學工程學系碩士論文,2011

    無法下載圖示 校內:2017-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE