簡易檢索 / 詳目顯示

研究生: 韓世芸
Han, Shih-Yun
論文名稱: 蝴蝶蘭互補DNA之簡單重複序列選殖與特性分析
Molecular cloning and characterization of cDNA-SSRs in Phalaenopsis orchids
指導教授: 吳文鑾
Wu, Wen-Luan
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 94
中文關鍵詞: 簡單重複序列豐富性微衛星序列cDNA基因庫蝴蝶蘭微衛星序列
外文關鍵詞: Phalaenopsis, simple sequence repeat (SSR), microsatellite, cDNA libraries enriched for microsatellite
相關次數: 點閱:126下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微衛星序列(microsatellite),又稱簡單重複序列(simple sequence repeats, SSRs)或稱短縱列重複序列(short tandem repeats, STRs),是以2-6個鹼基對為重複單位,頭尾相接形成的小片段DNA。微衛星序列因具有共顯性遺傳、再現性高、多對偶基因、高度多型性和易以聚合酵素連鎖反應偵測等優點,成為廣泛應用於栽培種指紋圖譜建立、遺傳多樣性評估和育種的分子標誌。微衛星序列存在於基因轉錄區和非轉錄區,位在基因轉錄區的微衛星序列與表現性狀連鎖的可能性高,且跨物種的可擴增性高。蝴蝶蘭(Phalaenopsis spp.)是一種高經濟價值花卉作物且是台灣重要的花卉產業,發展高效率的微衛星標誌系統可有效應用在蝴蝶蘭的品種鑑定與品種專利權的保護。本實驗之目的在於選殖蝴蝶蘭互補DNA之簡單重複序列與特性分析。首先構築台灣阿媽(P. amabilis var. formosa)栽培種花部及姬蝴蝶蘭(P. equestris)原生種葉片豐富性微衛星序列cDNA基因庫,分別以AG/TC、AC/TG和AGG/TCC微衛星序列為探針進行篩選,共獲得42個微衛星序列並進行特性分析。利用8組cDNA-SSR引子對分別檢測不同編號台灣阿媽或姬蝴蝶蘭原生種,發現其對偶基因數分佈在2-7之間,平均每一個cDNA-SSR會出現4.1個對偶基因;PIC值(polymorphism information content)分佈在0.62-0.99之間,平均值約為0.85。8組cDNA-SSR引子對在18種蝴蝶蘭原生種間的可擴增性為76.4%,顯示cDNA-SSR基因座在蝴蝶蘭屬內的保守性高。以PecAG002基因座在18個蝴蝶蘭原生種的對偶基因進行核酸定序及親源演化分析,發現cDNA-SSRs與傳統形態分類的演化模式大致相同。PecAG001基因座僅在P. equestris、P. × intermedia和P. lindenii可擴增出產物,具有物種特異性;因此利用PecAG001基因座分析30株商業品種,結果顯示可檢測出姬蝴蝶蘭遺傳貢獻度在3.22%以上的商業品種。另外,將PecAG001及PecAG002基因座以自動核酸遺傳分析系統(ABI PRISMTM 310 genetic analyzer)進行自動化核酸片段分析,得到正確的對偶基因大小。綜合上述結果,本實驗所發展的微衛星標誌來自基因表現序列,可用來鑑定蝴蝶蘭品種和分子育種。

    Microsatellites, also known as simple sequence repeats (SSRs) or short tandem repeats (STRs), are short (2-6 bp) tandemly repeated DNA sequences. Microsatellites are widely used as molecular markers in cultivar fingerprinting, genetic diversity assessment and marker-assisted selection because of their properties of genetic co-dominance, high reproducibility, multiallelic variation and high level of polymorphism as well as easily detectable by PCR. Microsatellites are present in both gene transcribed and nontranscribed regions. cDNA-SSRs may be associated with phenotypic traits and have higher transferability across related species. Phalaenopsis orchid is the most valued ornamentals and considered as an important floriculture industry in Taiwan. The development of very efficient SSR markers would be very useful for orchid cultivar identification and proprietary variety protection. The aim of this study was to isolate and characterize cDNA-SSRs for Phalaenopsis orchids. Firstly, the cDNA libraries enriched for microsatelltes of P. amabilis var. formosa and P. equestris were constructed and screened for AG/TC, AC/TG or AGG/TCC- microsatellite sequences. In total, 42 cDNA-SSR makers were obtained and characterized. Eight cDNA-SSR primer pairs were evaluated for amplification and genetic polymorphism in several P. amabilis or P. equestris accessions. The number of alleles per locus varied from 2 to 7 with a mean number of 4.1. The polymorphisms information content (PIC) ranged from 0.62 to 0.99 with an average of 0.85. The cross-species amplification of these cDNA-SSRs in 18 Phalaenopsis species was 76.4%, suggesting that the cDNA-SSR loci were highly conserved in Phalaenopsis. Sequences of the alleles at the locus PecAG002 from 18 Phalaenopsis species were used for phylogenetic analysis. The evolutionary pattern of cDNA-SSRs is consistent with that based on morphological characters. Positive amplifications at locus PecAG001 were obtained only in P. equestris, P. × intermedia and P. lindenii, indicating that this locus is species specific. Therefore, the locus PecAG001 was further analyzed on 30 commercial orchid accessions. This locus produced amplifications limited to accessions whose genetic contribution by P. equestris are above 3.22%. Moreover, the loci PecAG001 and PecAG002 were subjected to semi-automated fluorescent microsatellite analysis using ABI PRISMTM 310 genetic analyzer and accurate sizes of alleles were observed. Collectively, since these microsatellite makers developed in this study are primarily from expressed sequences, they can be used not only for variety identification but also for molecular breeding in orchids.

    目錄 中文摘要……………………………………………………………………i 英文摘要……………………………………………………………………ii 誌謝…………………………………………………………………………iii 目錄…………………………………………………………………………iv 表目錄………………………………………………………………………vii 圖目錄………………………………………………………………………viii 縮寫字對照表………………………………………………………………ix 第一章 前言………………………………………………………………1 一、微衛星序列簡介………………………………………………………1 二、微衛星序列的選殖策略………………………………………………2 三、cDNA-SSRs特性與應用………………………………………………5 四、蝴蝶蘭屬植物簡介……………………………………………………7 五、研究目的………………………………………………………………10 第二章 實驗材料與方法…………………………………………………12 一、實驗材料………………………………………………………………12 二、實驗方法………………………………………………………………12 1.傳統方法萃取蝴蝶蘭total RNA………………………………………12 2.微量萃取蝴蝶蘭基因組DNA……………………………………………12 3.合成雙股cDNA……………………………………………………………14 (1)分離純化mRNA…………………………………………………………14 (2)合成雙股cDNA (ds cDNA)……………………………………………15 4.選殖微衛星序列…………………………………………………………16 (1)製備雙股連接子………………………………………………………16 (2)擴增插入DNA……………………………………………………………16 (3)製備磁珠………………………………………………………………17 (4)雜合反應………………………………………………………………17 (5)擴增已雜合(post-hybridization)之雙股cDNA…………………………18 (6)接合作用………………………………………………………………18 (7)轉型實驗………………………………………………………………19 a.製備勝任細胞……………………………………………………………19 b.轉型作用…………………………………………………………………19 c.塗碟………………………………………………………………………19 5.微量製備質體DNA………………………………………………………20 (1)養菌……………………………………………………………………20 (2)微量抽取………………………………………………………………20 (3)切割作用測試…………………………………………………………20 6.菌落雜合反應……………………………………………………………21 (1)colony lift之製備……………………………………………………21 (2)微衛星序列探針的製備………………………………………………21 (3)雜合反應………………………………………………………………22 7.核酸定序及分析…………………………………………………………22 8.設計微衛星序列基因座之引子…………………………………………23 9.檢測微衛星基因座之擴增性……………………………………………23 (1)聚合酵素連鎖反應……………………………………………………23 (2)電泳分析………………………………………………………………23 10.微衛星基因座之特性分析……………………………………………24 (1)遺傳變異度分析………………………………………………………24 (2)多型性程度分析………………………………………………………24 11.自動化核酸片段分析…………………………………………………25 第三章 結果………………………………………………………………26 一、蝴蝶蘭豐富性微衛星序列cDNA基因庫之建構………………………26 二、蝴蝶蘭cDNA-SSRs選殖與特性分析…………………………………26 三、蝴蝶蘭cDNA-SSRs在蝴蝶蘭種內之遺傳變異性及多型性評估……29 四、蝴蝶蘭cDNA-SSRs在蝴蝶蘭屬原生種間之可擴增性及多型性分析…30 五、蝴蝶蘭cDNA-SSRs在蝴蝶蘭屬原生種間之序列保守性分析…………31 六、蝴蝶蘭cDNA-SSRs在P. violacea複合種群(P. violacea complex)之多型性分析………………33 七、蝴蝶蘭cDNA-SSRs在蝴蝶蘭商業品種之應用………………………34 八、自動化核酸片段分析…………………………………………………34 第四章 討論………………………………………………………………36 一、蝴蝶蘭豐富性微衛星序列cDNA基因庫及cDNA-SSRs之特性分析…36 二、cDNA-SSRs之遺傳變異度及多型性分析……………………………37 三、cDNA-SSRs在蝴蝶蘭屬原生種之移轉性(transferability)………38 四、PecAG002微衛星基因座在蝴蝶蘭屬原生種間之核酸序列保守性及親源演化分析………………………39 五、PecAG001微衛星基因座的特性分析及在商業品種之應用性………41 六、蝴蝶蘭cDNA-SSRs發展大量自動化分析之潛力……………………43 第五章 未來展望…………………………………………………………45 第六章 參考文獻…………………………………………………………46 表目錄 表一、本實驗所使用的台灣阿媽原生種之編號及其染色體倍數………54 表二、本實驗所使用的姬蝴蝶蘭原生種之編號及其染色體倍數………55 表三、本實驗所使用的蝴蝶蘭原生種……………………………………56 表四、本實驗所使用的P. violacea複合種群(complex)編號及分佈…57 表五、本實驗所使用的蝴蝶蘭商業品種…………………………………58 表六、本實驗所採用的重複序列(AC, AG和AGG)之雜合溫度條件………60 表七、蝴蝶蘭cDNA-SSRs基因座序列總覽…………………………………61 表八、進行蝴蝶蘭cDNA-SSRs基因座之聚合酵素連鎖反應資料…………63 表九、蝴蝶蘭cDNA-SSRs基因座之序列相似度比對(BLAST-X)結果……64 表十、4個微衛星基因座在台灣阿媽(P. amabilis var. formosa)種內之對偶基因數偵測與多型性評估………………………………………………67 表十一、4個微衛星基因座在姬蝴蝶蘭(P. equestris)種內之對偶基因數偵測與多型性評估………………………………………………68 表十二、8個cDNA-SSR在18種蝴蝶蘭屬原生種間的可擴增性分析…………69 表十三、PecAG001微衛星基因座在姬蝴蝶蘭種內的自動化核酸片段分析結果……70 表十四、PecAG001微衛星基因座在商業品種的自動化核酸片段分析結果…………………………71 表十五、PecAG002微衛星基因座在蝴蝶蘭原生種的自動化核酸片段分析結果………………72 表十六、PecAG002微衛星基因座在P. violacea複合種群的自動化核酸片段分析結果………………73 表十七、PecAG002微衛星基因座在商業品種的自動化核酸片段分析結果……………………74 圖目錄 圖一、確認豐富性微衛星序列cDNA基因庫中插入DNA之情形…………75 圖二、姬蝴蝶蘭之豐富性微衛星序列基因組基因庫以(AC)15探針進行菌落雜合反應,經過二次篩選之自動顯影的結果……………………………………76 圖三、微衛星基因座在P. amabilis var. formosa種內的多型性分析……77 圖四、微衛星基因座在P. equestris種內的多型性分析……………………78 圖五、微衛星基因座在蝴蝶蘭屬不同原生種間的可擴增性分析……………79 圖六、PecAG001微衛星基因座在蝴蝶蘭屬原生種之序列保守性分析………82 圖七、PecAG002微衛星基因座在蝴蝶蘭屬原生種之序列保守性分析………83 圖八、以聚類分析法構築18種蝴蝶蘭屬原生種之PecAG002微衛星基因座核酸序列之親源演化樹狀圖………………………………………………………85 圖九、PecAG002微衛星基因座在P. violacea complex之多型性分析……86 圖十、PecAG001微衛星基因座在蝴蝶蘭不同商業品種間之可擴增性分析…87 圖十一、PecAG001微衛星基因座的自動化核酸片段分析……………………89 圖十二、PecAG002微衛星基因座的自動化核酸片段分析……………………93

    林益賢、謝瑞旻,2002,台糖蝴蝶蘭品種改良技術之發展,台糖研究所研究彙報,178: 67-80.

    陳文輝,2002,蝴蝶蘭的品種改良,科學發展,351: 32-39.

    傅仰明、陳文輝、蔡媦婷、林益賢、邱明森、陳燿煌,1997,逢機增幅多型性DNA分子標誌在蝴蝶蘭原生種分類及演化親緣關係之研究,台糖研究所研究彙報,157: 27-42.

    傅仰明、陳文輝、蔡媦婷、謝瑞旻、林益賢、邱明森、吳俊謙,1996,姬蝴蝶蘭花色遺傳之研究,台糖研究所研究彙報,152: 35-49.

    Akkaya M.S., Bhagwat A.A. and Cregan P.B. (1992) Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132: 131-139.

    Arditti J. (1992) Classification and naming of orchids. In: Fundamentals of Orchid Biology. John Wiley & Sons, Inc., U.S.A. pp. 55-101.

    Arens P., Odinot P., van Heusden A.W., Lindhout P. and Vosman B. (1995) GATA and GACA repeats are not evenly distributed throughtout the tomato genome. Genome 38: 84-90.

    Broun P. and Tanksley S.D. (1996) Characterization and genetic mapping of simple sequence repeats in tomato genome. Mol. Gen. Genet. 250: 39-49.

    Chen C., Zhou P., Choi Y.A., Huang S. and Gmitter Jr F.G. (2006) Mining and characterizing microsatellites from citrus ESTs. Theor. Appl. Genet. 112: 1248-1257.

    Chen X., Temnykh S., Xu Y., Cho Y.G. and McCouch S.R. (1997) Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor. Appl. Genet. 95: 553-567.

    Chen Y.H., Tsai Y.J., Huang J.Z. and Chen F.C. (2005) Transcription analysis of peloric mutants of Phalaenopsis orchids derived from tissue culture. Cell Res. 15: 639-657.

    Christenson E.A. (2001) Phalaenopsis. Timber Press, Portland, Oregon, U.S.A. pp 39-248.

    Christenson E.A. and Whitten M.W. (1995) Phalaenopsis bellina (Rchb.f.) Christenson, a separate species from P. violacea Witte (Orchidaceae: Aeridinae). Brittonia 47: 57-60.

    Cipriani G., Lot G., Huang W.G., Marrazzo M.T., Peterlunger E. and Testolin R. (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterization and cross-species amplification in Prunus. Theor. Appl. Genet. 99: 65-72.

    Cordeiro G.M., Casu R., McIntyre C.L., Manners J.M. and Henry R.J. (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci. 160: 1115-1123.

    Cregan P.B., Mudge J., Fickus E.W., Marek L.F., Danesh D., Denny R., Shoemaker R.C., Matthews B.F., Jarvik T. and Young N.D. (1999) Targeted isolation of simple sequence repeat markers through the use of bacterial artificial chromosomes. Theor. Appl. Genet. 98: 919-928.

    Decroocq V., Fave M.G., Hagen L., Bordenave L. and Decroocq S. (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor. Appl. Genet. 106: 912-922.

    Decroocq V., Hagen L.S., Favé M.-G., Eyquard J.-P. and Pierronnet A. (2004) Microsatellite markers in the hexaploid Prunus domestica species and parentage lineage of three European plum cultivars using nuclear and chloroplast simple- sequence repeats. Mol. Breed. 13: 135-142.

    Dressler R.L. (1993) Phylogeny and Classification of the Orchid Family. Dioscorides Press, Portland, Oregon, U.S.A.

    Edwards K.J., Barker J.H. A., Daly A., Jones C. and Karp A. (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20: 758-760.

    Eujayl I., Sledge M.K., Wang L., May G.D., Chekhovskiy K., Zwonitzer J.C. and Mian M.A.R. (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor. Appl. Genet. 108: 414-422.

    Fischer D. and Bachmann K. (1998) Microsatellite enrichment in organism with large genomes (Allium cepa L.). Biotechniques 24: 796-802.

    Gao L., Tang J., Li H. and Jia J. (2003) Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol. Breed. 12: 245-261.

    Grunstein M. and Hogness D. (1975) Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl. Acad. Sci. U.S.A. 72: 3961-3965.

    Guo W.Z., Wang W., Zhou B.L. and Zhang T.Z. (2006) Cross-species transferability of G. arboreum-derived EST-SSRs in the diploid species of Gossypium. Theor. Appl. Genet. 112: 1573-1581.

    Gupta P.K., Rustgi S., Sharma S., Singh R., Kumar N. and Balyan H.S. (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol. Genet. Genomics 270: 315-323.

    He C., Poysa V. and Yu K. (2003) Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor. Appl. Genet. 106: 363-373.

    He W.H. and Parker R. (2000) Functions of Lsm proteins in mRNA degradation and splicing. Curr. Opin. Cell Biol. 12: 346-350.

    Kao Y.H. (2001) Phylogeny of Phalaenopsis species based on 5S rDNA intergenic spacer sequences. National Taiwan University, Master Thesis. Taipei, Taiwan.

    Kijas J.M.H., Fowler J.C.S., Garbett C.A. and Thomas M.R. (1994) Enrichment of microsatellites from the Citrus genome using biotinylated oligonucleotide sequences bound to streptavidin-coated magnetic particles. Biotechniques 16: 657-662.

    Kostia S., Varvio S.-L., Vakkari P. and Pulkkinen P. (1995) Microsatellite sequences in a conifer, Pinus sylvestris. Genome 38: 1244-1248.

    Kumar S., Tamura K., Jakobsen I.B. and Nei M. (2001) MEGA 2.1: Molecular Evolutionary Genetics Analysis software. Arizona State University, Tempe, AZ.

    Lee J.M., Nahm S.H., Kim Y.M. and Kim B.D. (2004) Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor. Appl. Genet. 108: 619-627.

    Li Y.H. (2000) Investigation on the physical distribution of microsatellites in Phalaenopsis orchids by fluorescence in situ hybridization. National Taiwan University, Master Thesis. Taipei, Taiwan.

    Lichtenzveig J., Scheuring C., Dodge J., Abbo S. and Zhang H.-B. (2005) Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L. Theor. Appl. Genet. 110: 492-510.

    Lin T.C. (2003) Isolation and characterization of microsatellites in Phalaenopsis orchids. National Cheng Kung University, Master Thesis. Tainan, Taiwan.

    Ma Z.Q., Röder M. and Sorrells M.E. (1996) Frequencies and sequence characteristics of di-, tri-, and tetra-nucleotide microsatellites in wheat. Genome 39: 123-130.

    Morgante M. and Olivieri A.M. (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J. 3: 175-182.

    Morgante M., Hanafey M. and Powell W. (2002) Microsatellites are preferentially associates with non-repetitive DNA in plant genomes. Nat. Genet. 30: 194-200.

    Nei M. (1973) Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 70: 3321-3323.

    Nicot N., Chiquet V., Gandon B., Amilhat L., Legeai F., Leroy P., Bernard M. and Sourdille P. (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor. Appl. Genet. 109: 800-805.

    O’Neill S.D., Nadeau J.A., Zhang X.S., Bui A.Q. and Halevy A.H. (1993) Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell 5: 419-432.

    Ostrander E.A., Jong P.M., Rine J. and Duyk G. (1992) Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences. Proc. Natl. Acad. Sci. U.S.A. 89: 3419-3423.

    Powell W., Machray G.C. and Provan J. (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1: 215-222.

    Refseth U.H., Fangan B.M. and Jakobsen K.S. (1997) Hybridization capture of microsatellites directly from genomic DNA. Electrophoresis 18: 1519-1523.

    Rungis D., Bérubé Y., Zhang J., Ralph S., Ritland C.E., Ellis B.E., Douglas C., Bohlmann J. and Ritland K. (2004) Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theor. Appl. Genet. 109: 1283-1294.

    Saha M.C., Mian M.A.R., Eujayl I., Zwonitzer J.C., Wang L. and May G.D. (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor. Appl. Genet. 109: 783-791.

    Saha S., Karaca M., Jenkins J.N., Zipf A.E., Reddy O.U.K. and Kantety R.V. (2003) Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica 130: 355-364.

    Saitou N. and Nei M. (1987) The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.

    Schlötterer C. and Tautz D. (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 20: 211-215.

    Schlötterer C. and Wiehe T. (1999) Microsatellites, a neutral marker to infer selective sweeps. In Microsatellites: Evolution and Applications (eds Goldstein DB, Schlötterer C), Oxford University Press, Oxford, pp. 238-247.

    Scott K.D. (2001) Microsatellites derived from ESTs, and their comparison with those derived by other methods. In Plant Genotyping: The DNA Fingerprinting of Plants. (ed., Henry R.J.), CABI Publishing, Oxon, UK, pp. 225-237.

    Scott K.D., Eggler P., Seaton G., Rossetto M., Ablett E.M., Lee L.S. and Henry R.J. (2000) Analysis of SSRs derived from grape ESTs. Thero. Appl. Genet. 100: 723-726.

    Squirrell J., Hollingsworth P.M., Woodhead M., Russell J., Lowe A.J. Gibby M. and Powell W. (2003) How much effort is required to isolate nuclear microsatellites from plants? Mol. Ecol. 12: 1339-1348.

    Sweet H.R. (1980) The genus Phalaenopsis. The Orchid Digest, Pomona, CA. pp. 11-20.

    Tachida H. and Iizuka M. (1992) Persistence of repeated sequences that evolve by replication slippage. Genetics 131: 471-478.

    Tautz D. and Renz M. (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12: 4127-4138.

    Temnykh S., Park W.D., Ayres N., Cartinhour S., Hauck N., Lipovich L., Cho Y.G., Ishii T. and McCouch S.R. (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100: 697-712.

    Thiel T., Michalek W., Varshney R.K. and Graner A. (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106: 411-422.

    Tsai C.C. (2003) Molecular phylogeny, biogeography, and evolutionary trends of the genus Phalaenopsis (Orchidaceae). National Sun Yat-sen University, Doctoral Dissertation. Kaohsiung, Taiwan.

    Tsai C.C., Huang S.C. and Chou C.H. (2006) Molecular phylogeny of Phalaenopsis Blume (Orchidaceae) based on the internal transcribed spacer of the nuclear ribosomal DNA. Plant Syst. Evol. 256: 1-16.

    Tsai W.C., Hsiao Y.Y., Lee S.H., Tung C.W., Wang D.P. Wang H.C., Chen W.H. and Chen H.H. (2006) Expression analysis of the ESTs derived from the flower buds of Phalaenopsis equestris. Plant Sci. 170: 426-432.

    Tautz D. and Renz M. (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12: 4127-4138.

    Varshney R.K., Thiel T., Stein N., Langridge P. and Graner A. (2002) In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell. Mol. Biol. Lett. 7: 537-546.

    Varshney R.K., Graner A. and Sorrells M.E. (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 23: 48-55.

    Wang Z., Weber J.L., Zhang G. and Tanksley S.D. (1994) Survey of plant short tandem DNA repeats. Theor. Appl. Genet. 88: 1-6.

    Wildcatt Orchids Database Fall 2003 version. Developer: Wildcatt Database Co. Ltd., American.

    Xie H., Sui Y., Chang F.Q., Xu Y. and Ma R.C. (2006) SSR allelic variation in almond (Prunus dulcis Mill.). Theor. Appl. Genet. 112: 366-372.

    Xu Y., Ma R.C., Xie H., Liu J.T. and Cao M.Q. (2004) Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region. Genome 47: 1091-1104.

    Yu J.K., Dake T.M., Singh S., Benscher D., Li W., Gill B. and Sorrells M.E. (2004) Development and mapping of EST-derived simple sequence repeat (SSR) markers for hexaploid wheat. Genome 47: 805-818.

    Yu K., Park S.J. and Poysa V. (1999) Abundance and variation of microsatellite DNA sequences in beans (Phaseolus and Vigna). Genome 42: 27-34.

    Zane L., Bargelloni L. and Patarnello T. (2002) Strategies for microsatellite isolation : a review. Mol. Ecol. 11: 1-16.

    下載圖示 校內:2009-08-04公開
    校外:2009-08-04公開
    QR CODE