| 研究生: |
張桂萍 Chang, Kuei-Ping |
|---|---|
| 論文名稱: |
近即時更新之訊號強度分布圖應用於基於低功耗藍牙發展之室內定位系統 Indoor Positioning System using Near Real-time Radio Maps in Fingerprinting based on Bluetooth Low Energy |
| 指導教授: |
江凱偉
Chiang, Kai-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 室內定位系統 、低功耗藍牙 、指紋比對法 、卡曼濾波器 、智慧型手機 |
| 外文關鍵詞: | Indoor positioning system, Bluetooth Low Energy, Fingerprinting, Kalman filter, Smartphones |
| 相關次數: | 點閱:119 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球定位系統(Global Positioning System, GPS)及慣性導航系統(Inertial Navigation System, INS)為常用之室外定位技術,其應用已十分普遍。而亦有相當多地研究致力於發展室內定位系統,然而,由於衛星訊號於室內環境會有遮蔽之現象而無法提供正確之室內定位解。另外,低成本之微機電系統慣性導航元件之定位誤差易隨運作時間而累積。低功耗藍牙(Bluetooth Low Energy, BLE) 為新規格之藍牙技術,其主要特點有: 耗電量極低、運作時間長、低成本且現今之智慧型手機大多搭載其規格之藍牙晶片。因此,本研究採用其技術來發展室內定位系統。此外,指紋比對法(fingerprinting)為常用於室內定位且為精度較高之定位演算法。指紋比對法之運作方式分為兩個階段,第一為建立空間之訊號強度分布圖(radio map);第二為將使用者收到之訊號強度與訊號強度分布圖進行比對而獲取使用者之座標資訊。該演算法之最大缺點為製作強度分布圖十分耗時,且需定期維護方能維持其定位精度。
本研究欲採用即時動態定位系統(e-GPS)之主站概念來補足其缺點,主站於本研究中為可在定點連續接收低功耗藍牙訊號之接收儀,其可用來自動且週期性地產生訊號強度分布圖。此外,此系統使用卡曼濾波器產生全域之訊號強度改正量,用以縮小訊號強度分布圖與使用者所處環境之差異。本研究額外亦考量低功耗藍牙發射器與手機天線之相對方位對訊號強度造成之影響,其影響即納入該定位系統之計算。本研究之定位系統誤差量於0.9至1.6公尺之間,相較於原始訊號強度之定位成果,該系統至多可降低63%之定位誤差。因此,本研究所提出之定位系統使用低成本之低功耗藍牙裝置即可提供穩定且良好之室內定位成果,且不須耗時地維護及建立訊號強度分布圖。
In recent years, Global Positioning System (GPS) and Inertial Navigation System (INS) are the common positioning techniques for outdoor applications. Therefore, many researches are committed themselves to the development of indoor positioning applications. However, GPS signals are blocked easily and fail to provide the correct position within indoor environments. On the other hand, the errors of low-cost Micro Electro Mechanical Systems (MEMS) IMU are accumulated over time. Bluetooth Low Energy (BLE) is the latest technology of Bluetooth. Its advantages contain ultra-low-power consumption, working for a long time, low cost and implementing in the smartphones with Bluetooth 4.0 chip. Hence, this research aims at constructing an indoor positioning system with BLE. The fingerprinting is the general positioning methodology used in wireless communication technologies. It consists of two main phases: offline phase and online phase. Offline phase is to construct radio maps representing the distribution of received signal strength indication (RSSI) in a certain space in advance. Then, the position of a smartphone user is estimated by matching the RSSI in radio maps in offline phase. Although the accuracy by this method is better than other positioning algorithms such as trilateration, its main shortcoming is extremely time-consuming. Moreover, the radio maps are not able to meet the situation during experiment because the signal power is attenuated by many environmental factors.
Thus, this research aims at developing an indoor positioning system, which combining the concept of main stations in e-GPS. The radio maps are automatically established and updated in period by main stations fixed in the indoor space. Additionally, the global RSSI correction model is constructed by Kalman filter (KF) using the RSSI from main stations for complementing the environmental difference between radio maps and the circumstance where users are tending to do positioning. In another hand, the errors caused by the relative orientation between a beacon and the antenna on the smartphone are considered in the proposed system. The RMSE of the proposed system is within 0.9 to 1.6 meters. The positioning errors can be reduced up to 63%. Consequently, the proposed system is able to provide stable and good positioning accuracy with low-cost beacons and receivers. Especially, it does not consume many efforts to construct and maintain radio maps.
Apple Inc. (2014). Getting Started with iBeacon Version 1.0. Retrieved from https://developer.apple.com/ibeacon/Getting-Started-with-iBeacon.pdf
Boukerche, A., Oliveira, H .A .B. F., Nakamura, E., F., & Loureiro, A., A., F. (2007). Localization systems for wireless sensor networks. IEEE Wireless Communications, 14(6), 6-12, doi: 10.1109/MWC.2007.4407221
Bluetooth Special Interest Group. (2010). Bluetooth Core 4.0 Specifications. Retrieved from https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwjfzJGYirnMAhWEj5QKHbtkDvAQFggqMAI&url=https%3A%2F%2Fwww.bluetooth.org%2Fdocman%2Fhandlers%2Fdownloaddoc.ashx%3Fdoc_id%3D229737&usg=AFQjCNFY1IFeFAAWwimnoaWMsIRZQvPDSw&cad=rja
Borowicz, W. (2015, January 2). How do beacons work? The physics of beacon tech [Web blog message], Retrieved from http://blog.estimote.com/post/106913675010/how-do-beacons-work-the-physics-of-beacon-tech
Chowdhury, T. I., Rahman, M. M., Parvez, S. A., Alam, A. K. M. M., Basher, A., Alam, A., & Rizwan, S. (2015, January). A multi-step approach for RSSI-based distance estimation using smartphones. Networking Systems and Security (NSysS), 2015 International Conference, IEEE. 1-5
Chow, C. Y., Mokbel, M. F., & Liu, X. (2006, November). A peer-to-peer spatial cloaking algorithm for anonymous location-based service. In Proceedings of the 14th annual ACM international symposium on Advances in geographic information systems, Arlington, Virginia, USA. 171-178, doi: 1-59593-529-0/06/0011
Clark, B. (2015, July 13). The Differences Between Bluetooth 4.0 and Wi-Fi Direct You Need To Know [Web blog message], Retrieved from http://www.makeuseof.com/tag/the-differences-between-bluetooth-4-0-and-wi-fi-direct-you-need-to-know/
Christiano, M. (2015, September 9). ZigBee vs Bluetooth and Bluetooth Smart [Web blog message], Retrieved from http://www.allaboutcircuits.com/technical-articles/zigbee-vs-bluetooth-and-bluetooth-smart/
Dementyev, A., Hodges, S., Taylor, S., & Smith, J. (2013, April). Power consumption analysis of Bluetooth Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario. Wireless Symposium (IWS), 2013 IEEE International,Beijing, China, 1-4, doi: 10.1109/IEEE-IWS.2013.6616827
Estimote, 2013. Preorder for Estimote Beacons available, shipping this summer, http://blog.estimote.com/post/57087851702/preorder-for-estimote-beacons-available-shipping
Faragher, R. (2012). Understanding the Basis of the Kalman Filter Via a Simple and Intuitive Derivation. IEEE SIGNAL PROCESSING MAGAZINE, 29(5), 128-132. doi: 10.1109/MSP.2012.2203621
Faragher, R., & Harle, R. (2014, September). An analysis of the accuracy of bluetooth low energy for indoor positioning applications. Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+'14).
Fernandez, T. M., Rodas, J., Escudero, C. J. & Iglesia, D. I. (2007, October). Bluetooth Sensor Network Positioning System with Dynamic Calibration. 2007 4th International Symposium on Wireless Communication Systems, IEEE, Trondheim, Norway, 45-49, doi: 10.1109/ISWCS.2007.4392299
Gomez, C., Oller, J., & Paradells, J. (2012). Overview and Evaluation of Bluetooth Low Energy: An Emerging Low-Power Wireless Technology. Sensors, 12(9), 11734-11753. doi: 10.3390/s120911734
Godha, S. (2006). Performance Evaluation of Low Cost MEMS-Based IMU Integrated With GPS for Land Vehicle Navigation Application (Master's thesis, Department of Geomatics Engineering of Calgary, Alberta, Canada). Retrieved from http://www.ucalgary.ca/engo_webdocs/MEC/06.20239.SGodha.pdf
Goldberg, A. O. (2012, October 16). Re: iPhone 5 Wi-Fi Antenna Replacement [Web blog message]. Retrieved from https://d3nevzfk7ii3be.cloudfront.net/igi/kntTmSteECxqglDO.huge
Hou, H. (2004). Modeling Inertial Sensors Errors Using Allan Variance (Master's thesis, Department of Geomatics Engineering of Calgary, Alberta, Canada). Retrieved from http://www.ucalgary.ca/engo_webdocs/NES/04.20201.HaiyingHou.pdf
Jung, J., Kang, D. & Bae, C. (2013, October). Distance Estimation of Smart Device using Bluetooth. Symposium conducted at the meeting of The International Conference on Systems and Networks Communications (ICSNC), Venice, Italy
Kamath, S. & Lindh, J. (2010). Measuring Bluetooth® Low Energy Power Consumption. Texas Instruments Application Note AN092, Dallas.
Kuchimanchi, S. (2015). Bluetooth Low Energy Based Ticketing Systems (Master's thesis, Department of Communications and Networking School of Electrical Engineering Aalto University, Finland). Retrieved from https://aaltodoc.aalto.fi/bitstream/handle/123456789/15613/master_Kuchimanchi_Sriharsha_2015.pdf?sequence=1
Kuo, T.,H. (2014) The Evaluation of Inertial Sensors and the Simulated Performance Evaluation of a Cold Atomic Interfered IMU Aided Low Cost Navigation Systems (Master's thesis, Department of Geomatics of National Cheng Kung University, Tainan, Taiwan).
Khodayari, S., Maleki, M., & Hamedi, E. (2010, July). A RSS-based fingerprinting method for positioning based on historical data. Symposium conducted at the meeting of Performance Evaluation of Computer and Telecommunication Systems (SPECTS), Ottawa, ON, Canada
Kaye, J., 2014. Replace Cable Applications in Industrial Automation with Bluetooth Low Energy (BLE), http://eecatalog.com/lps/2014/02/07/replace-cable-applications-in-industrial-automation-with-bluetooth-low-energy-ble/
Kushki, A., Plataniotis, K. N. & Venetsanopoulos, A. N. (2012). WLAN Positioning Systems: Principles and Applications in Location-Based Services [Safari]. ISBN: 9780521191852. Retrieved from https://books.google.com.tw/books?id=y4AKBYyT0lsC&pg=PA59&lpg=PA59&dq=the+signal+strength++inversely+proportional+to+squared+distance+path+loss&source=bl&ots=gYD5K-Oo1F&sig=yJ0eMF09CQ6H78C-lFtRC9kY2LQ&hl=zh-TW&sa=X&ved=0ahUKEwiun5aNjKXNAhXDkpQKHcdFAtUQ6AEIYDAJ#v=onepage&q=the%20signal%20strength%20%20inversely%20proportional%20to%20squared%20distance%20path%20loss&f=false
Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of Wireless Indoor Positioning Techniques and Systems. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 37(6), 1067-1080, doi: 10.1109/TSMCC.2007.905750
Li, B., Salter, J., Dempster, A. G. & Rizos, C. (2006, March). Indoor positioning techniques based on wireless LAN. In First IEEE International Conference on Wireless Broadband and Ultra Wideband Communications, Sydney, Australia, 13-16
Luo, J. & Zhan, X. (2014). Characterization of Smart Phone Received Signal Strength Indication for WLAN Indoor Positioning Accuracy Improvement. JOURNAL OF NETWORKS, 9(3), 739-746. doi: 10.4304/jnw.9.3.739-746
LitePoint. (2012). Bluetooth® Low Energy. Retrieved from http://www.litepoint.com/wp-content/uploads/2014/02/Bluetooth-Low-Energy_WhitePaper.pdf
Murphy, W.S. Jr. (2007). Determination of a Positioning using Approximate Distances and Trilateration (Master's thesis, Faculty and the Board of Trustees of the Colorado School of Mines, Golden, Colorado, USA). Retrieved from http://inside.mines.edu/~whereman/papers/Murphy-MS-Thesis-Complete-1992.pdf
Maharjan, B.K., Witkowski, U. & Zandian, R. (2014). TREE NETWORK BASED ON BLUETOOTH 4.0 FOR WIRELESS SENSOR NETWORK APPLICATIONS. Proceedings of the 6th European Embedded Design in Education and Research, 172-176, doi: 10.1109/EDERC.2014.6924382
Milovanovic V., 2016. Bluetooth Low Energy – Part 1: Introduction To BLE, h ttp://learn.mikroe.com/bluetooth-low-energy-part-1-introduction-ble/
Montaser, A. & Moselhi O. (2014). RFID indoor location identification for construction projects. AUTOMATION IN CONSTRUCTION, 39, 167-179
Mathur, A. & Newe, T. (2014, September). Comparison and overview of Wireless sensor network systems for Medical Applications. Proceedings of the 8th International Conference on Sensing Technology, Liverpool, UK, 272-277
Nassar, S. (2003). Improving the Inertial Navigation System (INS) Error Model for INS and INS/DGPS Applications (Doctoral thesis, Department of Geomatics Engineering of Calgary, Alberta, Canada). Retrieved from http://www.ucalgary.ca/engo_webdocs/KPS/03.20183.SNassar.pdf
Nassar, S., Niu, X., Aggarwal, P. and El-Sheimy, N. (2006, May). INS/GPS Sensitivity Analysis Using Different Kalman Filter Approaches. Proceedings of The Institute of Navigation National Technical Meeting (ION NTM 2006), Monterey, California, USA, 993-1001
Petkov, P. & Slavov, T. (2010). Stochastic Modeling of MEMS Inertial Sensors. CYBERNETICS AND INFORMATION TECHNOLOGIES, 10(2), 31-40.
Rodas, J. & Escudero, C. J. (2010). Dynamic path-loss estimation using a particle filter. IJCSI International Journal of Computer Science Issues, 7(3), 1-5
Rida, M. E., Liu, F., Jadi, Y., Algawhari, A. A. A. & Askourih, A. (2015, April). Indoor Location Position Based on Bluetooth Signal Strength. Information Science and Control Engineering (ICISCE), 2015 2nd International Conference, IEEE, Shanghai, China, 769-773, doi: 10.1109/ICISCE.2015.177
Rouse, M. (2007). frequency-hopping spread spectrum [Web blog message], Retrieved from http://searchnetworking.techtarget.com/definition/frequency-hopping-spread-spectrum
Siekkinen, M., Hiienkari, M., Nurminen, J. K. & Nieminen, J. (2012, April). How low energy is bluetooth low energy? Comparative measurements with ZigBee/802.15.4. Wireless Communications and Networking Conference Workshops (WCNCW), 2012 IEEE,Paris, France, 232-237, doi: 10.1109/WCNCW.2012.6215496
Smith, C. (2014, October 1). THE BEACONS FAQ: It's Time To Set The Story Straight About Beacons And Apple's iBeacon System [Web blog message], Retrieved from http://www.businessinsider.com/faq-beacons-and-apples-ibeacon-system-2014-7
Salas, A. C. (2014). Indoor Positioning System based on Bluetooth Low Energy (Master's thesis, Department of Telecommunications Engineering Polytechnic University of Catalonia, Barcelona, Spain). Retrieved from https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjR3JT3qsTMAhVGi5QKHc48B2wQFgggMAA&url=http%3A%2F%2Fupcommons.upc.edu%2Fbitstream%2Fhandle%2F2099.1%2F22364%2Fblepositioning_thesis_corbacho.pdf&usg=AFQjCNHGQ5_-3PVNA88ZDwq5XefgBESveQ&sig2=PU3jytYGvHbgYkXmWkPp5A
Subhan, F., Hasbullah, H., Rozyyev, A. & Bakhsh, S. T. (2011, April). Indoor positioning in Bluetooth networks using fingerprinting and lateration approach. Proceedings of the2011 International Conference on Information Science and Applications, 1-9, doi: 10.1109/ICISA.2011.5772436
Shin, B., Lee, J. H., Lee, T., & Kim, H. S. (2012, April). Enhanced weighted K-nearest neighbor algorithm for indoor Wi-Fi positioning systems. Computing Technology and Information Management (ICCM), 2012 8th International Conference, IEEE, 574-577
Townsend, K., Cufi, C., Akiba & Davidson, R. (2014). Getting Started with Bluetooth Low Energy [Safari]. ISBN: 978-1-49194-951-1. Retrieved from https://www.safaribooksonline.com/library/view/getting-started-with/9781491900550/
Talvitie, J., Renfors, M. & Lohan, E. S. (2015). Distance-Based Interpolation and Extrapolation Methods for RSS-Based Localization With Indoor Wireless Signals. IEEE Transactions on Vehicular Technology, 64(4), 1340 – 1353. doi: 10.1109/TVT.2015.2397598
Yang, Y. (2008). Tightly Coupled MEMS INS/GPS Integration with INS Aided Receiver Tracking Loops (Doctoral thesis, Department of Geomatics Engineering of Calgary, Alberta, Canada). Retrieved from http://www.ucalgary.ca/engo_webdocs/NES/08.20270.YYang.pdf
Yao, Q., Wang, F. Y., Gao, H., Wang, K., & Zhao, H. (2007, December). Location estimation in ZigBee Network based on fingerprinting. Vehicular Electronics and Safety, 2007. ICVES. IEEE International Conference on Beijing, China, IEEE, 1-6
Zhu, J., Luo, H., Chen, Z. & Li, Z. (2014, October). RSSI based Bluetooth low energy indoor positioning. Indoor Positioning and Indoor Navigation (IPIN), 2014 International Conference, IEEE, Busan, Korea, 526-533, doi: 10.1109/IPIN.2014.7275525
校內:2021-08-24公開