| 研究生: |
陸泓瑋 Lu, Hung-Wei |
|---|---|
| 論文名稱: |
研究具仿神經形態有機光電元件之多波段光響應行為 Study on Multiband Photoresponse in Neuromorphic Organic Optoelectronic Devices |
| 指導教授: |
鄭弘隆
Cheng, Horng-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 薄膜電晶體 、仿生突觸 、紫外光-可見光-紅外光感測 、有機高分子 、氧化鋅錫 、神經網絡計算 |
| 外文關鍵詞: | Thin-film transistors, biomimetic (artificial) synapses, UV–visible–infrared photodetection, organic polymers, zinc–tin oxide (ZTO), neural-network computing |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究以P型苯並二噻吩和苯並二噻吩二酮交替共聚衍生物 (簡稱PBDB-T)、N型二酮吡咯並吡咯和雙氰基噻吩乙烯交替共聚衍生物 (簡稱2DPP-2CNTVT) 與氧化鋅錫 (Zinc Tin Oxide, ZTO) 作為主動層之薄膜電晶體與兩端元件,透過多種材料的堆疊與混參,製作出能夠進行多波段廣域光感測的元件,並應用在仿生突觸行為與神經網絡的計算。本研究主要可分為四個部分,首先分析不同材料架構之薄膜的內部結構與光學特性;接著探討在不同波段光照下兩端薄膜元件的電特性與突觸特性;再進一步討論在不同波段光照下三端薄膜電晶體的電特性與突觸特性;最後一部分則進行元件的仿生突觸行為應用在神經網絡的計算分析。
第一部分探討在玻璃基板與ZTO薄膜上堆疊PBDB-T單層、2DPP-2CNTVT單層與PBDB-T/2DPP-2CNTVT雙層的微結構與光學特性的差異。發現在玻璃基板上PBDB-T/2DPP-2CNTVT雙層薄膜具有良好的表面平整性,而在ZTO薄膜上的雙層薄膜則呈現島狀結構。吸收光譜證實ZTO/PBDB-T/2DPP-2CNTVT 多層薄膜實現了多波段廣域 (200 - 1000 nm) 的吸收。拉曼光譜指出2DPP-2CNTVT在雙層薄膜中具有比在單層薄膜中更延伸的共軛平面結構。光激發光譜量測指出PBDB-T與2DPP-2CNTVT的界面間會有電荷轉移效應。
第二部分的結果顯示,在兩端操作下,主動層為單層PBDB-T的元件表現出具有記憶性的類比式反應,照光後所產生的電荷並不會馬上流失;而單層2DPP-2CNTVT的元件則表現出不具有記憶性的數位式反應,照光後所產生的電荷會馬上流失;PBDB-T/2DPP-2CNTVT的雙層堆疊與混參元件皆會得到不具有記憶性的數位式反應,但在ZTO薄膜上的雙層薄膜並照射紫外光,可以重新得到具有記憶性的類比式結果,顯示出該元件具有不同波段的光辨識、光感測與儲存電荷的能力。
第三部分的結果顯示,在三端操作下,在單層PBDB-T中混參2DPP-2CNTVT之後,會產生PN接面阻礙通道內部載子的傳輸,讓電流水平下降。將元件置於在照光環境下,皆會由於光生載子的產生而讓電流水平提升。在突觸行為的部份,元件皆有成功模擬出興奮性突觸後電流 (EPSC)、成對脈衝促進 (PPF) 與長期增強作用 (LTP) /長期抑制作用 (LTD) 行為,且在照光的環境下各項突觸權重指標皆有優化。
最後一部分則是將多突觸刺激的量測結果所得出的突觸權重參數應用在神經網絡的辨識率計算之中,皆可以得到接近理想值的辨識率,也與突觸權重參數的結果相互呼應,表示突觸權重與正確率是會相互影響的。
This dissertation investigates electrical characterization of thin-film transistors and two-terminal optoelectronic devices that employ, as active layers, a p-type alternating copolymer derivative of benzodithiophene and benzodithiophene-dione (PBDB-T), an n-type alternating copolymer derivative of diketopyrrolopyrrole and dicyanovinyl-thiophene-vinylene (2DPP-2CNTVT), and zinc–tin oxide (ZTO). By engineering multilayer stacks and mixed-blend formulations among these semiconductors, we realize devices that exhibit broadband, multiband photodetection spanning the ultraviolet–visible–infrared windows. The material platform further enables optoelectronic synaptic functions, including memory characteristics and paired-pulse behaviors, thereby supporting biomimetic synapse emulation. Leveraging these characteristics, we demonstrate neuromorphic computation in which optical inputs are sensed, weighted, and processed within the device structure, illustrating an in-sensor computing pathway. The results establish PBDB-T/2DPP-2CNTVT/ZTO heterostructures as a promising route to low-power, multifunctional hardware that unifies multiband sensing with synaptic plasticity, and they provide a material–device framework for future flexible systems integrating sensing, memory, and computation on a single platform.
[1] Sawatzki-Park, M., Wang, S. J., Kleemann, H., & Leo, K. (2023). Highly ordered small molecule organic semiconductor thin-films enabling complex, high-performance multi-junction devices. Chemical Reviews, 123(13), 8232-8250.
[2] Amna, B., & Ozturk, T. (2025). Organic field-effect transistor-based sensors: recent progress, challenges and future outlook. Journal of Materials Chemistry C, 13(17), 8354-8424.
[3] Yeboah, L. A., Abdul Malik, A., Oppong, P. A., Acheampong, P. S., Morgan, J. A., Addo, R. A. A., & Osei-Amponsah, S. (2025). Wide-bandgap semiconductors: a critical analysis of GaN, SiC, AlGaN, diamond, and Ga2O3 synthesis methods, challenges, and prospective technological innovations. Intelligent and Sustainable Manufacturing, 2(1), 10011.
[4] Murugapandiyan, P., Fletcher, A. A., Hasan, M. T., Ramkumar, N., & Revathy, A. (2025). Recent advancement in β-Ga2O3 MOSFETs: From material growth to device architectures for high-power electronics. Microelectronic Engineering, 112359.
[5] Coropceanu, V., Cornil, J., da Silva Filho, D. A., Olivier, Y., Silbey, R., & Brédas, J. L. (2007). Charge transport in organic semiconductors. Chemical Reviews, 107(4), 926-952.
[6] Shan, B., & Miao, Q. (2017). Molecular design of n-type organic semiconductors for high-performance thin film transistors. Tetrahedron Letters, 58(20), 1903-1911.
[7] Teng, J., Chen, Y., Huang, C., Yang, M., Zhu, B., Liu, W. J., & Wu, X. (2024). Graded-Band-Gap Zinc–Tin Oxide thin-film transistors with a vertically stacked structure for wavelength-selective photodetection. ACS Applied Materials & Interfaces, 16(7), 9060-9067.
[8] Nenashev, A. V., Oelerich, J. O., Greiner, S. H. M., Dvurechenskii, A. V., Gebhard, F., & Baranovskii, S. D. (2019). Percolation description of charge transport in amorphous oxide semiconductors. Physical Review B, 100(12), 125202.
[9] Südhof, T. C., & Malenka, R. C. (2008). Understanding synapses: past, present, and future. Neuron, 60(3), 469-476.
[10] Ding, Y., Zhang, Y., Zhang, X., Chen, P., Zhang, Z., Yang, Y., & Liu, Q. (2022). Engineering spiking neurons using threshold switching devices for high-efficient neuromorphic computing. Frontiers in Neuroscience, 15, 786694.
[11] Pereda, A. E. (2014). Electrical synapses and their functional interactions with chemical synapses. Nature Reviews Neuroscience, 15(4), 250-263.
[12] Harris, J. J., Jolivet, R., & Attwell, D. (2012). Synaptic energy use and supply. Neuron, 75(5), 762-777.
[13] Tauffer, L., & Kumar, A. (2021). Short-term synaptic plasticity makes neurons sensitive to the distribution of presynaptic population firing rates. Eneuro, 8(2).
[14] Stanton, P. K. (1996). LTD, LTP, and the sliding threshold for long-term synaptic plasticity. Hippocampus, 6(1), 35-42.
[15] Stanojevic, A., Woźniak, S., Bellec, G., Cherubini, G., Pantazi, A., & Gerstner, W. (2024). High-performance deep spiking neural networks with 0.3 spikes per neuron. Nature Communications, 15(1), 6793.
[16] Doumon, N. Y., Dryzhov, M. V., Houard, F. V., Le Corre, V. M., Rahimi Chatri, A., Christodoulis, P., & Koster, L. J. A. (2019). Photostability of fullerene and non-fullerene polymer solar cells: The role of the acceptor. ACS Applied Materials & Interfaces, 11(8), 8310-8318.
[17] Huseynova, G., Shrestha, N. K., Xu, Y., Shin, E. Y., Park, W. T., Ji, D., & Noh, Y. Y. (2018). Benzyl viologen as an n-type dopant for organic semiconductors. Organic Electronics, 62, 572-580.
[18] Prasad, S., Genene, Z., Marchiori, C. F., Singh, S., Ericsson, L. K., Wang, E., & Moons, E. (2024). Effect of molecular structure on the photochemical stability of acceptor and donor polymers used in organic solar cells. Materials Advances, 5(19), 7708-7720.
[19] Domokos, A., Aronow, S. D., Tang, T., Shevchenko, N. E., Tantillo, D. J., & Dudnik, A. S. (2019). Synthesis and optoelectronic properties of new methoxy-substituted diketopyrrolopyrrole polymers. ACS Omega, 4(5), 9427-9433.
[20] Li, M., Luo, A., Xu, W., Wang, H., Qiu, Y., Xiao, Z., & Cui, K. (2024). A visual raman nano− delivery system based on thiophene polymer for microtumor detection. Pharmaceutics, 16(5), 655.
[21] Ali, M., Ewenike, R. B., Manion, J. G., & Lessard, B. H. (2024). Two is better than one: how the addition of multiple biodegradable polymers can improve organic thin-film transistor performance. ACS Applied Materials & Interfaces, 17(1), 1734-1742.
[22] Ren, J., Sun, Y., Huang, S., Huai, Z., Wang, L., Kong, W., & Yang, S. (2020). Broadening the light absorption range via PBDB-T to improve the power conversion efficiency in ternary organic solar cells. Organic Electronics, 78, 105587.
[23] Shen, T., Jiang, Z., Wang, Y., & Liu, Y. (2024). Rational molecular design of diketopyrrolopyrrole‐based n‐type and ambipolar polymer semiconductors. Chemistry–A European Journal, 30(47), e202401812.
[24] Grott, S., Kotobi, A., Reb, L. K., Weindl, C. L., Guo, R., Yin, S., & Müller-Buschbaum, P. (2022). Solvent tuning of the active layer morphology of non‐fullerene based organic solar cells. Solar RRL, 6(6), 2101084.
[25] Rosas Villalva, D., Derewjanko, D., Zhang, Y., Liu, Y., Bates, A., Sharma, A., & Baran, D. (2025). Intermolecular-force-driven anisotropy breaks the thermoelectric trade-off in n-type conjugated polymers. Nature Materials, 1-9.
[26] Kilbride, R. C., Spooner, E. L., Cassella, E. J., O’Kane, M. E., Doudin, K., Lidzey, D. G., & Parnell, A. J. (2024). Exploring the impact of 1, 8-diioodoctane on the photostability of organic photovoltaics. ACS Applied Energy Materials, 7(19), 8401-8411.
[27] Shen, T., Jiang, Z., Wang, Y., & Liu, Y. (2024). Rational molecular design of diketopyrrolopyrrole‐based n‐type and ambipolar polymer semiconductors. Chemistry–A European Journal, 30(47), e202401812.
[28] Han, J., Wang, Z., Shen, J., & Tang, H. (2023). Symmetric-threshold ReLU for fast and nearly lossless ANN-SNN conversion. Machine Intelligence Research, 20(3), 435-446.
[29] Im, J., Kim, J., Yoo, H. N., Baek, J. W., Kwon, D., Oh, S., & Lee, J. H. (2022). On-chip trainable spiking neural networks using time-to-first-spike encoding. IEEE Access, 10, 31263-31272.
[30] Yu, J., Yang, X., Gao, G., Xiong, Y., Wang, Y., Han, J., & Wang, Z. L. (2021). Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Science Advances, 7(12), eabd9117.