簡易檢索 / 詳目顯示

研究生: 陸泓瑋
Lu, Hung-Wei
論文名稱: 研究具仿神經形態有機光電元件之多波段光響應行為
Study on Multiband Photoresponse in Neuromorphic Organic Optoelectronic Devices
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2025
畢業學年度: 114
語文別: 中文
論文頁數: 140
中文關鍵詞: 薄膜電晶體仿生突觸紫外光-可見光-紅外光感測有機高分子氧化鋅錫神經網絡計算
外文關鍵詞: Thin-film transistors, biomimetic (artificial) synapses, UV–visible–infrared photodetection, organic polymers, zinc–tin oxide (ZTO), neural-network computing
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究以P型苯並二噻吩和苯並二噻吩二酮交替共聚衍生物 (簡稱PBDB-T)、N型二酮吡咯並吡咯和雙氰基噻吩乙烯交替共聚衍生物 (簡稱2DPP-2CNTVT) 與氧化鋅錫 (Zinc Tin Oxide, ZTO) 作為主動層之薄膜電晶體與兩端元件,透過多種材料的堆疊與混參,製作出能夠進行多波段廣域光感測的元件,並應用在仿生突觸行為與神經網絡的計算。本研究主要可分為四個部分,首先分析不同材料架構之薄膜的內部結構與光學特性;接著探討在不同波段光照下兩端薄膜元件的電特性與突觸特性;再進一步討論在不同波段光照下三端薄膜電晶體的電特性與突觸特性;最後一部分則進行元件的仿生突觸行為應用在神經網絡的計算分析。
    第一部分探討在玻璃基板與ZTO薄膜上堆疊PBDB-T單層、2DPP-2CNTVT單層與PBDB-T/2DPP-2CNTVT雙層的微結構與光學特性的差異。發現在玻璃基板上PBDB-T/2DPP-2CNTVT雙層薄膜具有良好的表面平整性,而在ZTO薄膜上的雙層薄膜則呈現島狀結構。吸收光譜證實ZTO/PBDB-T/2DPP-2CNTVT 多層薄膜實現了多波段廣域 (200 - 1000 nm) 的吸收。拉曼光譜指出2DPP-2CNTVT在雙層薄膜中具有比在單層薄膜中更延伸的共軛平面結構。光激發光譜量測指出PBDB-T與2DPP-2CNTVT的界面間會有電荷轉移效應。
    第二部分的結果顯示,在兩端操作下,主動層為單層PBDB-T的元件表現出具有記憶性的類比式反應,照光後所產生的電荷並不會馬上流失;而單層2DPP-2CNTVT的元件則表現出不具有記憶性的數位式反應,照光後所產生的電荷會馬上流失;PBDB-T/2DPP-2CNTVT的雙層堆疊與混參元件皆會得到不具有記憶性的數位式反應,但在ZTO薄膜上的雙層薄膜並照射紫外光,可以重新得到具有記憶性的類比式結果,顯示出該元件具有不同波段的光辨識、光感測與儲存電荷的能力。
    第三部分的結果顯示,在三端操作下,在單層PBDB-T中混參2DPP-2CNTVT之後,會產生PN接面阻礙通道內部載子的傳輸,讓電流水平下降。將元件置於在照光環境下,皆會由於光生載子的產生而讓電流水平提升。在突觸行為的部份,元件皆有成功模擬出興奮性突觸後電流 (EPSC)、成對脈衝促進 (PPF) 與長期增強作用 (LTP) /長期抑制作用 (LTD) 行為,且在照光的環境下各項突觸權重指標皆有優化。
    最後一部分則是將多突觸刺激的量測結果所得出的突觸權重參數應用在神經網絡的辨識率計算之中,皆可以得到接近理想值的辨識率,也與突觸權重參數的結果相互呼應,表示突觸權重與正確率是會相互影響的。

    This dissertation investigates electrical characterization of thin-film transistors and two-terminal optoelectronic devices that employ, as active layers, a p-type alternating copolymer derivative of benzodithiophene and benzodithiophene-dione (PBDB-T), an n-type alternating copolymer derivative of diketopyrrolopyrrole and dicyanovinyl-thiophene-vinylene (2DPP-2CNTVT), and zinc–tin oxide (ZTO). By engineering multilayer stacks and mixed-blend formulations among these semiconductors, we realize devices that exhibit broadband, multiband photodetection spanning the ultraviolet–visible–infrared windows. The material platform further enables optoelectronic synaptic functions, including memory characteristics and paired-pulse behaviors, thereby supporting biomimetic synapse emulation. Leveraging these characteristics, we demonstrate neuromorphic computation in which optical inputs are sensed, weighted, and processed within the device structure, illustrating an in-sensor computing pathway. The results establish PBDB-T/2DPP-2CNTVT/ZTO heterostructures as a promising route to low-power, multifunctional hardware that unifies multiband sensing with synaptic plasticity, and they provide a material–device framework for future flexible systems integrating sensing, memory, and computation on a single platform.

    中文摘要I Extended AbstractIII 誌謝IV 目錄V 表目錄X 圖目錄XI 第一章 緒論1 1-1 有機半導體簡介1 1-2 無機半導體簡介2 1-3 研究動機3 第二章 有機/氧化鋅錫薄膜電晶體概論與應用5 2-1 有機半導體薄膜載子傳輸機制5 2-1-1 P-channel載子傳輸機制[5]5 2-1-2 N-channel載子傳輸機制[6]6 2-2 氧化鋅錫簡介6 2-3 非晶氧化物半導體薄膜載子傳輸機制[8]7 2-4 薄膜電晶體的基本架構8 2-5 薄膜電晶體的運作原理9 2-5-1 基本電性參數10 2-5-2 電晶體的操作模式13 2-6 仿人工神經突觸簡介14 2-6-1 神經突觸運作機制14 2-6-2 突觸後電流與能量消耗15 2-6-3 成對脈衝刺激與抑制16 2-6-4 增強作用與抑制作用17 2-6-5 神經運算網路的指標性參數17 第三章 實驗方法與分析儀器26 3-1 實驗材料26 3-1-1 元件基板26 3-1-2 有機高分子26 3-1-3 前驅物27 3-1-4 高分子修飾層27 3-1-5 離子液體27 3-1-6 導電高分子28 3-1-7 有機溶劑28 3-2 元件製程29 3-2-1 基板切割與清潔29 3-2-2 氧電漿處理30 3-2-3 主動層溶液配製30 3-2-4 蒸鍍電極32 3-2-5 主動層薄膜製作32 3-2-6 閘極介電層的配製與貼附33 3-2-7 上閘極製作與貼附34 3-3 元件架構35 3-4 製程儀器介紹35 3-4-1 超音波震洗機35 3-4-2 旋轉塗佈機36 3-4-3 高真空電漿蝕刻系統36 3-4-4 高溫爐37 3-4-5 物理氣相沉積儀 (Physical Vapor Deposition, PVD)37 3-5 分析儀器介紹38 3-5-1 半導體參數分析儀38 3-5-2 原子力顯微鏡 (Atomic force microscope, AFM)39 3-5-3 紫外光-可見光吸收光譜儀 (UV-VIS absorption spectrometers)40 3-5-4 拉曼光譜儀 (Raman Spectroscopy)40 3-5-5 光激發螢光光譜儀 (Photoluminescence, PL)41 3-5-6 高強度多功能X光薄膜微區繞射儀 (Multipurpose High intensity X-Ray Thin-Film Micro Area Diffractometer, XRD)41 第四章 實驗結果與討論46 4-1 前言46 4-2 有機高分子/無機薄膜分析與光學特性46 4-2-1 紫外光-可見光吸收光譜分析46 4-2-2 拉曼光譜分析47 4-2-3 光激發螢光光譜分析 48 4-2-4 原子力顯微鏡分析50 4-2-5 高強度多功能X光薄膜微區繞射儀分析51 4-3 兩端薄膜元件的電特性分析51 4-3-1 多波段的照光電特性分析51 4-4 兩端薄膜元件的仿生光突觸特性分析56 4-4-1 單脈衝刺激仿神經光突觸特性56 4-4-2 雙脈衝刺激仿神經光突觸特性57 4-4-3 多脈衝刺激仿神經光突觸特性57 4-5 三端薄膜元件的電特性分析60 4-5-1 電特性分析60 4-5-2 電晶體的照光電特性分析62 4-6 三端薄膜元件的仿生電突觸特性分析64 4-6-1 單脈衝刺激仿神經電突觸特性64 4-6-2 雙脈衝刺激仿神經電突觸特性66 4-6-3 多脈衝刺激仿神經電突觸特性68 4-7 神經網路的運算分析與模擬70 4-7-1 多突觸刺激的突觸權重參數71 4-7-2 神經網路的模擬72 第五章 總結與未來展望106 5-1 結論106 5-2 未來展望107 參考文獻109

    [1] Sawatzki-Park, M., Wang, S. J., Kleemann, H., & Leo, K. (2023). Highly ordered small molecule organic semiconductor thin-films enabling complex, high-performance multi-junction devices. Chemical Reviews, 123(13), 8232-8250.
    [2] Amna, B., & Ozturk, T. (2025). Organic field-effect transistor-based sensors: recent progress, challenges and future outlook. Journal of Materials Chemistry C, 13(17), 8354-8424.
    [3] Yeboah, L. A., Abdul Malik, A., Oppong, P. A., Acheampong, P. S., Morgan, J. A., Addo, R. A. A., & Osei-Amponsah, S. (2025). Wide-bandgap semiconductors: a critical analysis of GaN, SiC, AlGaN, diamond, and Ga2O3 synthesis methods, challenges, and prospective technological innovations. Intelligent and Sustainable Manufacturing, 2(1), 10011.
    [4] Murugapandiyan, P., Fletcher, A. A., Hasan, M. T., Ramkumar, N., & Revathy, A. (2025). Recent advancement in β-Ga2O3 MOSFETs: From material growth to device architectures for high-power electronics. Microelectronic Engineering, 112359.
    [5] Coropceanu, V., Cornil, J., da Silva Filho, D. A., Olivier, Y., Silbey, R., & Brédas, J. L. (2007). Charge transport in organic semiconductors. Chemical Reviews, 107(4), 926-952.
    [6] Shan, B., & Miao, Q. (2017). Molecular design of n-type organic semiconductors for high-performance thin film transistors. Tetrahedron Letters, 58(20), 1903-1911.
    [7] Teng, J., Chen, Y., Huang, C., Yang, M., Zhu, B., Liu, W. J., & Wu, X. (2024). Graded-Band-Gap Zinc–Tin Oxide thin-film transistors with a vertically stacked structure for wavelength-selective photodetection. ACS Applied Materials & Interfaces, 16(7), 9060-9067.
    [8] Nenashev, A. V., Oelerich, J. O., Greiner, S. H. M., Dvurechenskii, A. V., Gebhard, F., & Baranovskii, S. D. (2019). Percolation description of charge transport in amorphous oxide semiconductors. Physical Review B, 100(12), 125202.
    [9] Südhof, T. C., & Malenka, R. C. (2008). Understanding synapses: past, present, and future. Neuron, 60(3), 469-476.
    [10] Ding, Y., Zhang, Y., Zhang, X., Chen, P., Zhang, Z., Yang, Y., & Liu, Q. (2022). Engineering spiking neurons using threshold switching devices for high-efficient neuromorphic computing. Frontiers in Neuroscience, 15, 786694.
    [11] Pereda, A. E. (2014). Electrical synapses and their functional interactions with chemical synapses. Nature Reviews Neuroscience, 15(4), 250-263.
    [12] Harris, J. J., Jolivet, R., & Attwell, D. (2012). Synaptic energy use and supply. Neuron, 75(5), 762-777.
    [13] Tauffer, L., & Kumar, A. (2021). Short-term synaptic plasticity makes neurons sensitive to the distribution of presynaptic population firing rates. Eneuro, 8(2).
    [14] Stanton, P. K. (1996). LTD, LTP, and the sliding threshold for long-term synaptic plasticity. Hippocampus, 6(1), 35-42.
    [15] Stanojevic, A., Woźniak, S., Bellec, G., Cherubini, G., Pantazi, A., & Gerstner, W. (2024). High-performance deep spiking neural networks with 0.3 spikes per neuron. Nature Communications, 15(1), 6793.
    [16] Doumon, N. Y., Dryzhov, M. V., Houard, F. V., Le Corre, V. M., Rahimi Chatri, A., Christodoulis, P., & Koster, L. J. A. (2019). Photostability of fullerene and non-fullerene polymer solar cells: The role of the acceptor. ACS Applied Materials & Interfaces, 11(8), 8310-8318.
    [17] Huseynova, G., Shrestha, N. K., Xu, Y., Shin, E. Y., Park, W. T., Ji, D., & Noh, Y. Y. (2018). Benzyl viologen as an n-type dopant for organic semiconductors. Organic Electronics, 62, 572-580.
    [18] Prasad, S., Genene, Z., Marchiori, C. F., Singh, S., Ericsson, L. K., Wang, E., & Moons, E. (2024). Effect of molecular structure on the photochemical stability of acceptor and donor polymers used in organic solar cells. Materials Advances, 5(19), 7708-7720.
    [19] Domokos, A., Aronow, S. D., Tang, T., Shevchenko, N. E., Tantillo, D. J., & Dudnik, A. S. (2019). Synthesis and optoelectronic properties of new methoxy-substituted diketopyrrolopyrrole polymers. ACS Omega, 4(5), 9427-9433.
    [20] Li, M., Luo, A., Xu, W., Wang, H., Qiu, Y., Xiao, Z., & Cui, K. (2024). A visual raman nano− delivery system based on thiophene polymer for microtumor detection. Pharmaceutics, 16(5), 655.
    [21] Ali, M., Ewenike, R. B., Manion, J. G., & Lessard, B. H. (2024). Two is better than one: how the addition of multiple biodegradable polymers can improve organic thin-film transistor performance. ACS Applied Materials & Interfaces, 17(1), 1734-1742.
    [22] Ren, J., Sun, Y., Huang, S., Huai, Z., Wang, L., Kong, W., & Yang, S. (2020). Broadening the light absorption range via PBDB-T to improve the power conversion efficiency in ternary organic solar cells. Organic Electronics, 78, 105587.
    [23] Shen, T., Jiang, Z., Wang, Y., & Liu, Y. (2024). Rational molecular design of diketopyrrolopyrrole‐based n‐type and ambipolar polymer semiconductors. Chemistry–A European Journal, 30(47), e202401812.
    [24] Grott, S., Kotobi, A., Reb, L. K., Weindl, C. L., Guo, R., Yin, S., & Müller-Buschbaum, P. (2022). Solvent tuning of the active layer morphology of non‐fullerene based organic solar cells. Solar RRL, 6(6), 2101084.
    [25] Rosas Villalva, D., Derewjanko, D., Zhang, Y., Liu, Y., Bates, A., Sharma, A., & Baran, D. (2025). Intermolecular-force-driven anisotropy breaks the thermoelectric trade-off in n-type conjugated polymers. Nature Materials, 1-9.
    [26] Kilbride, R. C., Spooner, E. L., Cassella, E. J., O’Kane, M. E., Doudin, K., Lidzey, D. G., & Parnell, A. J. (2024). Exploring the impact of 1, 8-diioodoctane on the photostability of organic photovoltaics. ACS Applied Energy Materials, 7(19), 8401-8411.
    [27] Shen, T., Jiang, Z., Wang, Y., & Liu, Y. (2024). Rational molecular design of diketopyrrolopyrrole‐based n‐type and ambipolar polymer semiconductors. Chemistry–A European Journal, 30(47), e202401812.
    [28] Han, J., Wang, Z., Shen, J., & Tang, H. (2023). Symmetric-threshold ReLU for fast and nearly lossless ANN-SNN conversion. Machine Intelligence Research, 20(3), 435-446.
    [29] Im, J., Kim, J., Yoo, H. N., Baek, J. W., Kwon, D., Oh, S., & Lee, J. H. (2022). On-chip trainable spiking neural networks using time-to-first-spike encoding. IEEE Access, 10, 31263-31272.
    [30] Yu, J., Yang, X., Gao, G., Xiong, Y., Wang, Y., Han, J., & Wang, Z. L. (2021). Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Science Advances, 7(12), eabd9117.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE