簡易檢索 / 詳目顯示

研究生: 陳立璇
Chen, Li-Hsuan
論文名稱: 繞線機之纏繞路徑規劃與控制
Winding Pattern Design and Control of Filament-Machine
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 41
中文關鍵詞: 繞線機路徑規劃複材增強壓力氣瓶運動控制
外文關鍵詞: Winding Machine, Path Planning, Composite Reinforcement, Pressure Vessel, Motion Control
相關次數: 點閱:170下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了滿足航太產業質輕高強度之需求,燃料氣瓶的設計與製造成為太空發射載具提升負載能力的關鍵。目前較常採用的製程是以設計好之固定幾何金屬瓶,配合複合材料披覆來達成增強抗張能力及降低瓶重之效果。本研究結合了金屬瓶設計、複材纏繞設計、整體氣瓶應力分析並完成纏繞製程。所提出之纏繞製程以控制系統為著眼點,由機構運動學推導出繞線機台各軸馬達的運動命令,並根據耦合性決定四軸的主從關係,以進行複材纏繞實現。本論文以傳統三軸車床為基礎建構四軸繞線機台,藉由繞線機各次座標系之定義,獲得複材纏繞氣瓶程序的幾何描述。首先,以複合材料剪力模數與楊氏係數、柱面纏繞角,藉由充氣加壓氣瓶靜力平衡的關係式,計算最佳的氣瓶端蓋幾何外型。為了使纏繞過程不產生複材與金屬氣瓶間的滑動,計算複材纏繞過程側向滑脫力不超出最大靜摩擦力的纏繞角範圍,做為纏繞模式的參考。由於複材的主軸方向與副軸方向的抗張強度有極大差異,在設定柱面纏繞角下完成氣瓶表面均勻纏繞複材一次後,便可進行複材厚度計算與複材增強氣瓶之應力分析。根據分析結果,找出複材耗費長度最少且應力分布足以抵抗內部高壓氣體之纏繞角度與纏繞路徑。最後,基於所獲得之纏繞路徑,以繞線機構計算四軸驅動馬達相對之運動控制指令,並設計人機介面,實現繞線控制與即時監控功能。研究成果除可提升台灣在航太業製造能力外,對醫療、工業與民生使用之各式壓力氣瓶製造也極具產業應用價值。

    The purpose of this paper is to find an optimized filament-winding pattern that can use minimal filament to cover the entire pressure vessel. In order to meet the needs of the aerospace industry for light weight, high strength, and pressure resistance, this paper will focus on system control, combines analysis, design and manufacturing, using the friction analysis to prevent the sliding during the winding process, then calculate the strength of material after filament covered the whole vessel surface and find out the optimal winding path. To make the winding-machine work as expected, the motion commands of each axis motor of the winding-machine are derived from dynamics, and design a human-machine interface to achieve real-time monitoring function.

    論文摘要 I ABSTRACT II 本文誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 參數表 XII 第1章 緒論 1 1.1 研究動機 1 1.2 文獻資料回顧 1 1.3 本文架構 2 第2章 氣瓶幾何與複材線纏繞路徑描述 3 2.1 坐標軸定義 3 2.2 纏繞模式設計 6 2.3 纏繞路徑分析 15 第3章 複材纏繞增強氣瓶之應力與強度分析 23 第4章 四軸繞線機運動路徑規劃與實現 29 4.1 機台外型設計 29 4.2 四軸響應控制設計 30 4.3 四軸馬達控制之實現 33 第5章 結論 39 參考文獻 40

    Borazjani, Soroosh & Sulaiman, Shamsuddin & Roshan, A. & Heydaryan, S.. (2013). Failure Analysis of Aluminum Reinforced Composite Vessel. Applied Mechanics and Materials. 392. 178-182. 10.4028/www.scientific.net/AMM.392.178.
    Chougule, Pranav. (2019). DESIGN OF A 4-AXIS COMPOSITE FILAMENT WINDING MACHINE BY MODIFYING MANUAL LATHE MACHINE. 10.13140/RG.2.2.11033.16489.
    Gbadeyan, Oluwatoyin & Kanny, K. & Mohan, Turup. (2017). Tribological, Mechanical, and Microstructural of Multiwalled Carbon Nanotubes/Short Carbon Fiber Epoxy Composites. Journal of Tribology. 140. 10.1115/1.4037357.
    Gibson, R. F. (2016). Principles of composite material mechanics, 4th edition. CRC Press, Boca Roton.
    Grace. (2019). SPBZ20-8-(Spindle Number&Spindle base). Xiamen Shike Machinery Co.,Ltd.
    Gray, Alfred. (1998). Modern differential geometry of curves and surfaces with Mathematica. 2nd ed.
    Lin, Y.M. (2019). Winding Pattern Design of Filament-wound Pressure Vessel. MSc Thesis, NCKU.
    Ma, Quanjin & Rejab, M. & Mat Sahat, Idris & Amiruddin, M. & Bachtiar, Dandi & Siregar, Januar & Ibrahim, Mohd. (2018). Design of portable 3-axis filament winding machine with inexpensive control system. JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES. 12. 10.15282/jmes.12.1.2018.15.0309.
    Peters, S. T. (2011). Composite filament winding. ASM International.
    Vafaeesefat, Abbas. (2009). Dome Shape Optimization of Composite Pressure Vessels Based on Rational B-Spline Curve and Genetic Algorithm. Applied Composite Materials. 16. 321-330. 10.1007/s10443-009-9097-3.
    Ye, Lin & Daghyani, Hamid. (1996). Sliding friction and wear of carbon fibre-polyetheretherketon commingled yarn composites against steel. Journal of Materials Science Letters. 15. 1536-1538. 10.1007/BF00625015.
    Zu, Lei & Koussios, Sotiris & Beukers, Adriaan. (2010). Shape optimization of filament wound articulated pressure vessels based on non-geodesic trajectories. Composite Structures - COMPOS STRUCT. 92. 339-346. 10.1016/j.compstruct.2009.08.013.
    Zu, Lei & Koussios, Sotiris & Beukers, Adriaan. (2011). Integral Design for Filament-Wound Composite Pressure Vessels. Polymers and Polymer Composites. 19. 413-420. 10.1177/0967391111019004-525.
    Zu, Lei. (2020). Design and Optimization of Filament Wound Composite Pressure Vessels.

    下載圖示 校內:2025-08-17公開
    校外:2025-08-17公開
    QR CODE