| 研究生: |
林聰鎰 Lin, Tsong-Yi |
|---|---|
| 論文名稱: |
壓電噴墨頭流體動態行為之模擬研究 Numerical Studies of Flow Dynamics in a Piezoelectric Inkjet Printhead |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 175 |
| 中文關鍵詞: | 暫態行為 、速度 、壓力 、壓電 |
| 外文關鍵詞: | piezoelectric inkjet, transient behavior, velocity, pressure |
| 相關次數: | 點閱:47 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
起源於噴墨印表機噴印技術的微液滴噴射技術,隨著微機電製程之進步,供需式噴墨技術主流之一的壓電式噴墨頭之用途不止應用於傳統噴墨列印,而漸漸成為可以應用在電路基板配線、彩色濾光片、微泵浦燃油噴射、3D-RP快速成型、以及生醫工程等方面,而受到極大的注目。
本論文以擠壓管式壓電噴墨頭為研究對象,經由模擬之方法,採用數學模型以求解連續方程式及動量守恆方程式,在自由表面及介面重建之處理上,採用PLIC (Piecewise Linear Interface Calculation)並耦合流體體積法(Volume Fraction of Fluid , VOF),在表面張力的處理上採用CSF (Continuum Surface Force)模式。在本研究中,用移動邊界模擬壓電管受到電壓及工作頻率驅動時之形變情形,並改變不同外形參數(管長、管徑、噴嘴口徑)及操作參數(頻率、振幅),以求得當暫態行為結束之時,其對於管內液體各項物理量及動態行為之影響。
本研究透過模擬之方法,求得各條件下管內各物理量之變化並加以比較。經觀察及比較後發現管內速度及壓力大小變化會隨管長之增加、管徑及噴嘴口徑之下降、以及頻率和振幅之增加而上升,且管內速度變化和振幅及頻率成正比之關係,管內壓力變化和振幅成正比之關係,和頻率增加倍數之平方成正比。而頻率之增減,亦可增加或減少所擠壓出之液量,進而達到控制液滴大小之目的。
Micro-droplet injection technology, originated from inkjet printing technology have been applied to many appilications such as IC package, LCD color filters, micro fuel pump, 3D rapid prototyping technology, and bio-medical devices. Accompanying with progress of Micro Electro-Mechanical Systems (MEMS), piezoelectric inkjet printhead, one of the major technology of Drop-on-Demand (DOD) inkjet printheads, has raised a lot of attention because of its great ability to wide applications.
This thesis studies the squeeze mode piezoelectric inkjet printhead by the method of simulation. In this study, the numerical methods are used to solve continuity and momentum equilibrium equations for flow field , as well as VOF (Volume of Fluid) and PLIC (Piecewise Linear Interface Calculation) schemes for the free surface construction. For the treatment of surface tension effects, a CSF (Continuum Surface Force) model is employed. In this study, a moving boundary is used to express the deformation boundary conditions of a squeeze-mode piezoelectric inkjet printhead while driven by sinusoidal AC signal. The main objectives for this study is using different parameters including printhead geometry and opearation conditions to find out the influence of parameters on the dynamic behaviors inside the inkjet printhead after the vanishment of transient behavior. In this study, it is found that the velocity and pressure will be raised by the increase of the tube length, frequency and amplitude, or reduced the radius of tube and orifice. The change of maximum velocity in the device is found to be proportional to frequency and amplitude. It is noticed the maximum pressure in the device becomes linear with respect to the amplitude, and the square of frequency. The increase or decrease of frequency can also change the ejective droplet volume. Theses findings will help designers not only in the design a piezoelectric inkjet printhead, but also in control of the droplet size ejected from the piezoelectric inkjet printhead.
[1] Hue P. Le*, Le Technologies, Inc., Beaverton, Oregon, “Progress and Trends in Ink-jet Printing Technology.”, Journal of Imaging Science and Technology • Volume 42, Number 1, January/February 1998.
http://www.imaging.org/pubs/jist/index.cfm
[2] J. T. Yeh, “Simulation and Industrial Applications of Inkjet.”, The 7th National Computational Fluid Dynamics Conference, Kenting, August, 2000.
[3] 林建樺,“擠壓管式壓電制動噴墨頭之微液滴噴射行為動力分析研究.”,國立成功大學 航空太空工程學系 碩士論文
[4] 噴打“頭水一體”與“頭水分離”誰更好?
http://www.it.com.cn/f/office/056/23/130732.htm
[5] D.B. Wallace and D.J. Hayes, “Micro-Printing System for MEMS Packaging Using Nano-Structured Materials.”, NanoEngineering World Forum, Marlborough, MA Jun. 23-25, 2003.
[6] D.J. Hayes, W.R. Cox, and D.B. Wallace, “Printing System for MEMS Packaging.”, Proceedings, SPIE Micromachining & Microfabrication Conference, San Francisco CA, Oct. 22-25, 2001.
[7] Shun-Chi Chang, Jayesh Bharathan, and Yang Yang, Roger Helgeson and Fred Wudl, Michael B. Ramey and John R. Reynolds, “Dual-color polymer light-emitting pixels processed by hybrid inkjet printing.”, APPLIED PHYSICS LETTERS VOLUME 73, NUMBER 18 NOV. 2 1998.
[8] Chuck Edwards, Richard Bennett, James (Jueng-Gil) Lee, “Precision Industrial Ink Jet Printing Technology for Full Color PLED Display Manufacturing.”, Kenneth Silz Litrex Corp., 6670 Owens Drive, Pleasanton, CA 94588, U.S.A.
[9] 美國新技術讓未來造飛機如同列印文稿http://big5.ce.cn/gate/big5/sci.ce.cn/discovery/others/200609/12/t20060912_8528911.shtml
[10] W. Royall Cox, Chi Guan, Donald J. Hayes and David B. Wallace, MicroFab Technologies, Inc., “Microjet Printing of Micro-Optical Interconnects.”, Int. J. of Microcircuits & Elect. Packaging, Vol. 23, No.3, pp. 346-351, 3rd Quarter 2000.
[11] Warren P. Mason, Bell Telephone Laboratories, Murray Hill, New Jersey 07974, and Columbia University, New York, New York 10027 “Piezoelectricity, its history and applications.”, The Journal of the Acoustical Society of America, Dec. 1981, Volume 70, Issue 6, pp. 1561-1566.
[12] Piezoelectricity, http://en.wikipedia.org/wiki/Piezoelectricity
[13] 吳朗, “電子陶瓷壓電”,全欣資訊圖書股份有限公司, 1995年
[14] 許蘇文, “高頻基板用低介電材料-PPO樹脂之合成”,國立成功大學 化學工程研究所 碩士論文, 2004.
[15] 周卓明, “壓電力學(Piezoelectricity Mechanics)”,全華科技圖書股份有限公司,2003年初版.
[16] Jens Eggers, “A Brief History of Drop Formation.”, arXiv: physics/0403056 v1, 9 Mar 2004
[17] L. Rayleigh, “On the Instability of Jets.”, Proc. London Math Soc., Vol.10, No.4, 1878.
[18] A. Asai, T. Hara and I. Endo, “One-Dimensional Model of Bubble Growth and Liquid Flow in Bubble Jet Printers.", Jpn. J. Appl. Phys., Vol. 26, pp. 1794-1801,1987.
[19] A. Asai, “Three-Dimensional Calculation of Bubble Growth and
Drop Ejection in a Bubble Jet Printer.”, ASME J. Fluids Eng., Vol.114, pp.638-641, 1992.
http://cat.inist.fr/?aModele=afficheN&cpsidt=4514507
[20] W. C. Chen, P. H. Chen and S. H. Chang, “Development of Droplet String Injected by Thermal Bubble Printhead.”, Proceeding of 14th Mechanical Engineering Conference, .R.O.C., pp.70-77, 1997
[21] F. G. Tseng, C. J. Kim, and C. M. Ho, “A Microinjector Free of Satellite Drops and Characterization of the Ejected Droplets.”, Micro-Electro-Mechanical Systems(MEMS), DSC-/vol. 66, 1998 ASME IMECE, pp. 89-95,. November, 1998.
[22] J. E. Fromm, 1984. “Numerical calculation of the fluid dynamics of drop-on-demand jets". IBM J. Res. Dev. 28, 3 (May. 1984), 322-333. http://portal.acm.org/citation.cfm?id=1011105
[23] T. W. Shield, D. B. Bogy and F. E. Talke, “Drop Formation by DOD Ink-Jet Nozzle : A Comparison of Experiment and Numerical Simulation.", IBM Journal of Research and Development, Vol. 31, pp. 96-110, 1987.
[24] 單子睿,“壓電式噴墨系統之液滴型態控制研究及其數值模擬.”,國立成功大學 材料科學及工程學系所 碩士論文,2003
[25] 郭永吉,“壓電式噴墨系統之液滴噴射行為模擬.",國立東華大學 材料科學與工程研究所 碩士論文,2003
[26] 陳政宏、吳鉉忠、黃文星,“微噴墨技術應用之模擬及實驗驗證.”,CAE Molding Confernce,2005. http://www.caemolding.org/cmc/thesis/2005/B09.htm
[27] F. C. Lee, “PZT Printing Applications, Technologies, New Devices.", Ultrasonic Symposium, pp.693-697, IEEE, 1988.
[28] C. W. Hirt, B. D. Nichols and R. S. Hotchkiss, “SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries.”, Tech. Report LA-8355, Los Alamos Scientific Laboratory, 1980. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5122053
[29] C. W. Hirt and B. D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries.”, Journal of Computational Physics, No. 39, p. 201-225, 1981.
http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=6438937
[30] W. F. Noh and P. R. Woodward, “SLIC (Simple Line Interface Method).”, Lecture Notes in Physics, Vol. 59, pp. 330-340, 1976.
http://adsabs.harvard.edu/abs/1976nmfd.conf..330N
[31] W. J. Rider and D. B. Kothe, “Reconstructing Volume Tracking.”, Journal of Computational Physics, Vol. 141, p.112-152, 1998.
[32] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli and S. Zaleski, “Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-dimensional Flows.”, Journal of Computational Physics, Vol. 152, p.423-456, 1999.
[33] R. Scardovelli and S. Zaleski, “Analytical Relations Connecting Linear Interfaces and Volume Fractions in Rectangular Grids.”, Journal of Computational Physics, Vol. 164, pp.228-237, 2000.
[34] Douglas B. Kothe, Raymond C. Mjolsness, Martin D. Torrey, “RIPPLE: A Computer Program for Incompressible Flows with Free Surfaces.”, LA-12007-MS, April 1991.
[35] 噴墨技術發展沿革http://www.omniwell.com.tw/profile/printer/printer_1.htm
[36] “壓電式微液滴噴射數學模擬系統之開發與實驗研究.”,吳鉉忠,國立成功大學 材料科學及工程學系 博士論文)
[37] “噴墨列印技術在電子工業之應用,” 葉吉田
http://www.mrl.itri.org.tw/yflow/jet-99/jet-99.htm
[38] S. Kamisuk et al., “A Low Power, Small, Electrostatically-Driven Commercial Inkjet Head.”, the 13th Annual International Conference on Micro Electro Mechanical Systems, pp793~798, Jan., 2000