簡易檢索 / 詳目顯示

研究生: 陳芊如
Chen, Chien-Ju
論文名稱: 利用近景攝影測量技術探討台灣東部池上斷層南段之地表潛移行為
Surface Rupture of the Chihshang Creeping Fault in Eastern Taiwan Using Close Range Photogrammetry
指導教授: 饒瑞鈞
Rau, Ruey-Juin
共同指導教授: 景國恩
Ching, Kuo-En
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系碩士在職專班
Department of Earth Sciences (on the job class)
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 129
中文關鍵詞: 池上斷層攝影測量相機率定潛移斷層
外文關鍵詞: Chihshang fault, Photogrammetry, Camera calibration, Creeping fault
相關次數: 點閱:154下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 縱谷斷層為台灣造山帶中歐亞板塊與菲律賓板塊現今之板塊縫合帶,其中,池上斷層因具有顯著之跨斷層擠壓速率,且為縱谷斷層地表潛移最顯著之區段,故為探討斷層潛移行為最佳之研究對象。本研究因此選定台東關山電光地區作為研究區域,在池上斷層破裂沿線的電光國小西北方約317.86 m,於排水道之水泥駁坎處發現破裂出露地表的區域,故在此建立潛移斷層監測網。
    早期對於各類野外監測網的研究方式,是使用單點或點與點之間基線的方式,獲得二維座標,缺乏三維座標的數值。且早期的測量技術,無法快速獲取密集的點位相對座標,而現今使用近景攝影測量技術,能快速獲得待測點位的座標,並協助測得斷層進地表的活動行為。本研究將採用絕對精度可達0.3 mm之交會攝影及多影像匹配技術,針對研究區域活動斷層附近之地表地物進行取樣,進而偵測斷層於近地表造成之地殼變動量。以近景攝影測量技術做為主要監測方式,透過近景攝影測量技術,運用多方交會攝影及多影像匹配技術,使用被攝物體影像以建立物體空間相對位置。用以獲得台東關山地區池上斷層周遭地表變形之位移量。接著將根據此地表位移量進行潛移斷層活動行為分析。於研究中採用消費型全像幅單眼反射式(DSLR)數位相機,在經過嚴密之相機率定後,利用交會攝影及多影像匹配技術,針對研究區域活動斷層附近之地表地物進行較高頻率之取樣,進而偵測斷層於近地表造成之地殼變動量。由於本研究區域之斷層為潛移之活動行為,可藉由各時期斷層近地表的地殼位移量,建立台灣東部地區地殼變形形貌。
    藉由分析786個觀測點位之時間序列及此研究牆面十二時期之位移變化後,可得到此牆面上下盤並無明顯之相對位移變化,因此推論池上斷層南段於此區域並無斷層潛移之行為存在;在時間序列及牆面前後期的位移分析中,可得到各點位隨時間之變化與雨量有關聯性,於濕季時皆往西邊移動,於乾季時則往東邊移動;因此本研究範圍之各點位受雨量影響而有週期性之變化。

    SUMMARY
    The Chihshang fault is a rapid creeping reverse fault while being able to produce large earthquakes at depth. The specialty of the Chihshang fault makes the near fault creeping observing task even more important. Close-range Photogrammetry enables fast and dense measurement that can have great contribution to the understanding of near-surface activities at active faults. This research incorporates convergent photography and multi-image matching techniques using consumer digital single-lens reflex camera, providing alomst monthly measurement for a total 12 times with accuracy up to 0.3 mm from 2012 to 2016. Acquiring the coordinates of the outcrop and further calculate the cross fault displacements. By analyzing the photogrammetry time series, we observed that the concrete wall moves eastward in dry season; westward in rainy season. But no cross fault displacements has been observed during the four-year photogrammetry measurements. The Chihshang fault is considered to be a rapid creeping reverse fault with left-lateral component. However, our result based on close-range Photogrammetry shows no convincing relative movements across the hanging wall and the foot wall, suggesting the southern segment of the Chihshang fault is currently locked near the surface with no observable creeping behavior.
    Keywords: Chihshang fault, Photogrammetry, Camera calibration, Creeping fault

    INTRODUCTION
    The Chihshang fault, one segment of the plate suture between the Eurasian and the Philippine Sea Plates in eastern Taiwan, is a rapid creeping reverse fault, which has been considered to show interseismic creep near the surface while contemporaneously being capable of producing large earthquakes at depth. The creeping behavior of the Chihshang fault has been observed for nearly thirty years from leveling, triangulation, creepmeter , GPS and InSAR. Instead of fault creep, the Chihshang fault is also able to generate huge eartquakes as the 2003 Mw 6.8 Chengkung earthquake. Observing the near fault creeping behavior of the chihshang fault remains an important task.
    METHODOLOGY & DATA
    Traditional methods of monitoring use baseline calculation to acquire 2 dimensional coordinates, lacking information in the 3 dimensional space and the measurements are usually sparse. Modern monitoring technologies from close-range Photogrammetry enables fast and dense measurement that can have great contribution to the understanding of near-surface activities at active faults. We installed 786 steel nails along the footwall and the hanging wall of the outcrop, which locates at a 20 meters wide wall. All nails are distributed well along the wall and every nail was affixed to a 8-mm diameter white circle sticker with a black dot in the center. We then did photogrammetry measurements every three months.
    RESULTS & DISCUSSION
    This research incorporates convergent photography and multi-image matching techniques using consumer DSLR (Digital Single-Lens Reflex Camera), providing measurements with accuracy up to 0.3 mm after proper calibration from 2012 to 2016 with high frequency (monthly measurement), to acquire coordinates of the outcrop and further calculate the displacements to analyze the creeping behavior of the southern section of the Chihshang fault. By analyzing the time series of photogrammetry result. We’re able to observe that the concrete wall moves eastward in dry season and westward in rainy season. But no significant displacement has been observed during the four-year photogrammetry measurements.
    CONCLUSION
    The Chihshang fault is considered a rapid creeping reverse fault with left-lateral component. However, our result based on close-range Photogrammetry shows no convincing relative movements across the hanging wall and the foot wall, suggesting the southern segment of the Chihshang fault is currently locked near the surface with no observable creeping behavior.

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章、緒論 1 1.1、研究動機 1 1.2、前人研究 3 第二章、地質背景 7 2.1、研究區域的地質與構造 8 2.1.1、海岸山脈 8 2.1.2、花東縱谷 8 2.1.3、池上段南段 9 2.1.4、地震分布 10 第三章、攝影測量原理與研究流程 12 3.1、攝影測量基本原理 12 3.1.1、內方位參數及透鏡畸變 14 3.1.2、外方位參數 15 3.1.3、附加參數自率光束法空中三角平差 16 3.1.3.1、相機率定 17 3.2、人造標與空三平差 20 3.3、近景攝影測量技術應用於地殼變形分析 21 3.4、佈標與拍攝 22 3.4.1、近景測量之資料使用 22 第四章、研究結果與討論 26 4.1、同時期與同區域觀測成果比較 26 4.2、觀測點位時間序列分析 26 4.3、前後期觀測成果比較 32 4.4、與第一期觀測成果比較 40 第五章、結論 43 第六章、參考文獻 44 附錄一、監測網觀測點位對應圖 47 附錄二、監測網觀測點位之時間序列 51

    方磊(2006),基於特徵的圖像序列三維場景重建技術研究。華中科技大學信息與通訊工程博士論文。
    何春蓀(1986),臺灣地質概論-台灣地質圖說明書,增訂第二版,經濟部中央地質調查所出版,共164頁。
    何春蓀(1997),臺灣地質概論-臺灣地質圖說明書,經濟部中央地質調查所,中華民國,共164頁。
    何維信(1985),航空攝影測量學,國立編譯館主編,中大國圖書公司,台北。
    何維信(1988),數位攝影機之率定問題,行政院國家科學委員會專題研究計畫成果報告。
    何維信、黎驥文(1995),空間資料交換時圖形與屬性資料之描述,測量工程,第37卷,第4期,第37-53頁。
    余水倍、李瓊武(1986),台灣東部地殼垂直變形之研究。第五屆測量學術及應用研討會論文集,G1-G17。
    李建成(2006),花東縱谷上之池上斷層:世界上位移速率最快的活動層之一。中央研究院週報,第1085期,第1頁
    李建成、朱傚祖、安朔葉、胡植慶、余水倍、陳宏宇、鄭富書、林正洪、饒瑞鈞、周錦德、張勝雄、將國彰(2002),從地殼變形與斷層活動討論地震災害潛在性:花東縱谷池上斷層的研究。地質,第21卷第二期,第31-52頁。
    林啟文、張徽正、盧詩丁、石同生、黃文正(2000),台灣活動斷層概論第二版,經濟部中央地質調查所特刊,第十三號,共122頁。
    姜彥麟(2012),臺灣東部池上斷層全斷之地表破裂與變形帶調查及構造特性分析,經濟部中央地質調查所特刊,第二十六號,第1-15頁。
    姜彥麟、朱傚祖、李建成、黃志遠(2012),經濟部中央地質調查所特刊,第二十六號,第9-16頁。
    陳文山、林益正、顏一勤、楊志成、紀權窅、黃能偉、林啟文、林偉雄、侯進雄、劉彥求、林燕慧、石同生、盧詩丁(2007),從古地震研究與GPS資料探討縱谷斷層的分段意義。經濟部中央地質調查所特刊,第十號,第165-191頁。
    黃偉城(2004),利用地面三維雷射掃描儀研究斷層變形之可行性-2003年Mw6.5台東地震池上斷層之同震及震後變形。
    葉柏嘉(2012),以線段偵測為基礎之半自動三維房屋模型重建方法,國立成功大學測量工程學系碩士論文。
    劉虹妤(2000),數位相機率定之自動化,國立成功大學測量工程學系碩士論文。
    鄭世楠、葉永田、徐明同、辛在勤(1999),台灣十大災害地震圖集,中央氣象局與中央研究院地球科學研究所,共290頁。
    謝幸宜(2013),以自率光束法提升四旋翼UAV航拍影像之空三平差經度,航測及遙測學刊,第十六卷,第四期,第245-260頁。
    鍾惠玲(2007),利用2003年Mw6.8台東成功地震之震後滑移探討池上斷層之摩擦特性,國立成功大學地球科學系碩士論文。
    饒見有、陳智揚、詹鈞評、劉暹、李文慶(2014),無人機攝影測量與直接地理定位之精度分析,國土測會與空間資訊,第二卷,第一期,第11頁。
    Angelier, j. and E. Barrier (1986), Active Collision in Eastern Taiwan: The Coastal Range, Men. Geol.Soc. China, 7, 135-159.
    Angelier, J., H. T. Chu, and J. C. Lee (1997), Shear concentration in a collision zone: Kinematics of the active Chihshang Fault, Longitudinal Valley, eastern Taiwan, Tectonophysics, 274, 117-144.
    Angelier, J., H. T. Chu, J. C. Lee, and J. C. Hu (2000), Active faulting and earthquake risk: the Chihshang Fault case, Taiwan, J. Geodyn., 29, 151-185.
    Champenois, J., B. Fruneau, E. Pathier, B. Deffontaines, K. C. Lin and J. C. Hu (2012), Monitoring of active tectonic deformations in the Longitudinal Valley (eastern Taiwan) using persistent scatterer InSAR method with ALOS PALSAR data, Earth and Planetary Science Letters, 337-338, 144-155.
    Cronk, S. and C. S. Fraser (2008), Hybrid measurement scenarios automated close-range photogrammetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b. Beijing.
    Dach, R., U. Hugentobler, P. Fridez, and M. Meindl (Eds.) (2007), Bernese GPS Software Version 5.0, Astronomical Institute, University of Berne, 612 pp
    Fraser, C. S. (1998), Automated Processes in Digital Photogrammetric Calibration, Orientation, and Triangulation, DIGITAL SIGNAL PROCESSING , 8, 277-283.
    Hsu, T. L. (1956), Geology of the Coastal Range, eastern Taiwan. Bull. Geol. Surv. Taiwan, 8. 39-64.
    Lee, J. C. and J. Angelier (1993), Location of active deformation and geodetic data analyses: An example of the Longitudinal Valley fault,Taiwan: Bull. Soc. Geol. Fr., 164(4), 533-570.
    Lee, J. C., J. Angelier, H. T. Chu, J. C. Hu, F. S. Jeng, and R. J. Rau (2003), Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998-2001, J. Geophys. Res., 108, no. B11, 2528, doi:10.1029/2003JB002394.
    Wolf, P. R. (1983), Elements of Photogrammetry, McGraw-Hill Book Company: 477-513.
    Wolf, P. R, and B. A. Dewitt (2000), Elements of photogrammetry: with applications in GIS, 3rd ed. Wolf, P. R, Dewitt, B. A. McGrawHill Book Co.
    Yu, S. B.,and L. C. Kuo (2001), Present-day crusal motion along the Longitudinal Valley Fault,Eastern Taiwan, Tectonophysics, 333, 199-217.
    Yu, S. B., and C. C. Liu (1989), Fault creep on the central segment of the Longitudinal Valley fault, Eastern Taiwan, Proc. Geol. Soc. China, 32, no. 3, 209-231.
    Yu, S. B., H. Y. Chen, and L. C. Kuo (1997), Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41-59.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE