簡易檢索 / 詳目顯示

研究生: 陳昱廷
Chen, Yu-Ting
論文名稱: 分析宿主因子細胞週期蛋白B3在出血性大腸桿菌誘發線蟲肌動蛋白5異位表現中扮演的角色
Analysis of the role of the host factor CYB-3 in the enterohemorrhagic E. coli-induced ACT-5 ectopic expression in C. elegans
指導教授: 陳昌熙
Chen, Chang-Shi
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 31
中文關鍵詞: 線蟲出血性大腸桿菌肌動蛋白 5 異位表現細胞週期蛋白 B3/週期蛋白 依賴性激酶 1動力素相關蛋白
外文關鍵詞: C. elegans, Enterohemorrhagic E. coli (EHEC), ACT-5 ectopic expression, CYB-3/CDK-1, DRP-1
相關次數: 點閱:170下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 出血性大腸桿菌是一種新興的人畜共通病原菌,會藉由糞口途徑感染並寄殖在人 類的腸道,造成出血性下痢、出血性腸炎、溶血性尿毒症等症狀,甚至會死亡。對於 出血性大腸桿菌的感染,目前在使用抗生素的治療上仍存有諸多限制,所以去探討出 血性大腸桿菌的致病機轉是必要的課題。從我們之前的研究發現,出血大腸桿菌會造 成線蟲產生 A/E 病灶,A/E 病灶會造成線蟲腸道微絨毛的抹除。因此我們利用出血性 大腸桿菌來感染帶有紅色螢光微絨毛肌動蛋白(ACT-5)蛋白的轉殖動物,感染過程中 我們發現出血性大腸桿菌會造成線蟲 ACT-5 的異位表現,ACT-5 蛋白會從線蟲腸道 頂端散佈到腸道細胞質中。然而,參與在出血性大腸桿菌誘發線蟲微絨毛肌動蛋白 (ACT-5)異位表現中的宿主因子尚未被釐清。因此為了找尋參與的宿主因子,我們利 用核糖核酸抑制(RNAi)的技術來篩選抑制出血性大腸桿菌感染初期會被提高表達的 宿主基因。從抑制這些高表達宿主基因的結果中發現,細胞週期蛋白 B3(CYB-3)是出 血性大腸桿菌誘發線蟲 ACT-5 蛋白異位表現中必要的宿主因子。在 G2/M 時期,CYB-3 會藉由結合跟活化週期蛋白依賴性激酶 1(CDK-1)來調控細胞週期。而我們的結果中 也發現,CDK-1 也是出血性大腸桿菌誘發線蟲 ACT-5 蛋白異位表現中必要的宿主因 子,然而其他的細胞週期蛋白跟週期蛋白依賴性激酶並沒有參與在出血性大腸桿菌誘 發線蟲 ACT-5 蛋白異位表現中。再者,從 RNAi 抑制 CDK-1 的內生性調控者跟處理 CDK-1 小分子藥物的實驗,都證實 CDK-1 的活性對於出血性大腸桿菌誘發的這個病 理特徵是重要的。接下來我們更發現,CDK-1 磷酸化的受質動力素相關蛋白(DRP-1) 和它的內生性調控者都參與在出血性大腸桿菌誘發線蟲 ACT-5 蛋白異位表現中。在 最後我們也確認 DRP-1 作用在 CYB-3 的下游且參與在這個出血性大腸桿菌誘發的病 理特徵中。總結我們發現 CYB-3/CDK-1/DRP-1 的訊息傳遞在出血性大腸桿菌感染過 程誘發線蟲 ACT-5 蛋白異位表現中扮演重要角色。

    Enterohemorrhagic E. coli (EHEC) is an emerging zoonotic pathogen that infects human by colonizing intestine through the oral-fecal route and can cause bloody diarrhea, hemolytic uremic syndrome (HUS), and even death. The use of antibiotics is constrained for the treatment of EHEC infection, therefore understanding the pathogenesis of EHEC is required. Our previous studies indicated that EHEC can cause specific attaching and effacing (A/E) lesions in C. elegans intestine. A/E lesion in C. elegans is characterized by the effacement of intestinal microvilli. Moreover, EHEC induces ectopic expression of the microvillar actin (ACT-5) from the apical surface to the cytosol in intestinal cells of the transgenic animal with mCherry-tagged ACT-5. However, the host factors required for this EHEC-induced ACT-5 ectopic expression in C. elegans is still unknown. We therefore aimed to identify the host factors required for this EHEC-induced pathology. To this end, we designed a genetic suppressor screen to RNAi the host genes that are significantly up-regulated during early EHEC infection. From RNAi of up-regulated host genes, Cyclin B3 (CYB-3) is a host factor required for this EHEC-induced ACT-5 ectopic expression phenotype. CYB-3 regulates cell cycle through binding to and activating the Cyclin-Dependent Kinase 1 (CDK-1) during G2/M phase. Our results indicated that CDK-1 is also required for the EHEC-induced ACT-5 ectopic expression, while the other Cyclins and CDKs are not. Moreover, from RNAi of the CDK-1 endogenous regulators and inhibition of CDK-1 activity by specific small molecule inhibitor all demonstrated that CDK-1 activity is essential for this EHEC-induced pathology. Next, we found that the CDK-1 substrate DRP-1 and the endogenous regulators of DRP-1 are also involved in this EHEC-induced ACT-5 ectopic expression. Finally, we also confirmed that DRP-1 acts downstream to CYB-3 in this EHEC-induced pathology. Taken together, we showed that the CYB-3/CDK-1/DRP-1 signal axis plays an important role in the EHEC-induced ACT-5 ectopic expression.

    摘要...............................I Abstract........................................ II 誌謝 ........................................... III Introduction .......................................... 1 Material and method ............................ 4 Bacterial and Nematode Strains ................. 4 One generation RNA interference (RNAi) ................ 4 C. elegans ACT-5 Ectopic Expression assay............ 4 Quantitative RT-PCR...................................5 Specific CDK-1 Inhibitor treatment ................5 Enterohemorrhagic E. coli EDL933 Killing Assay after RNA Interference ..................5 Results ........................................... 6 Enterohemorrhagic E. coli (EHEC) induces significant microvillar actin (ACT-5) ectopic expression in C. elegans four days post infection. ...........................6 CYB-3 is the host factor required for the EHEC-induced ACT-5 ectopic expression ...7 CDK-1 activity is essential for the EHEC-induced ACT-5 ectopic expression while other Cyclins and CDKs are not........................8 DRP-1 acts downstream to CYB-3 and involves in the EHEC-induced ACT-5 ectopic expression...................9 RNAi of mitochondrial fission and fusion regulatory genes in C. elegans shows different phenotypes of the EHEC-induced ACT-5 ectopic expression .....................10 Conclusion ........................................ 11 Discussion ................ 12 References................ 14 Figures ............................................... 18 Fig. 1 Quantitative of ACT-5 ectopic expression of C. elegans population during 5 days EHEC- and OP50- treatment. ...............18 Fig. 2 CYB-3 is an important host factor required for the EHEC-induced ACT-5 ectopic expression. ........................................19 Fig. 3 CDK-1 activity is essential for the EHEC-induced ACT-5 ectopic expression while other Cyclins and CDKs are not............................................22 Fig. 4 DRP-1 acts downstream to CYB-3 and involves in the EHEC-induced ACT-5 ectopic expression.. ..............................26 Fig. 5 Quantitative of EHEC-induced ACT-5 ectopic expression after loss function of mitochondrial fission and fusion regulatory genes.. .......................29 Fig. 6 Conclusion.. .............................30 Table ..................... 31

    1. Girard, F., et al., Interaction of enterohemorrhagic Escherichia coli O157: H7 with mouse intestinal mucosa. FEMS microbiology letters, 2008. 283(2): p. 196-202.
    2. Mohawk, K.L. and A.D. O'Brien, Mouse models of Escherichia coli O157: H7 infection and shiga toxin injection. BioMed Research International, 2011. 2011.
    3. Goosney, D.L., S. Gruenheid, and B.B. Finlay, Gut feelings: enteropathogenic E. coli (EPEC) interactions with the host. Annual review of cell and developmental biology, 2000. 16(1): p. 173-189.
    4. Waterfield, N.R. and B.W. Wren, Invertebrates as a source of emerging human pathogens. Nature Reviews Microbiology, 2004. 2(10): p. 833-841.
    5. Alegado, R.A., et al., Characterization of mediators of microbial virulence and innate immunity using the Caenorhabditis elegans host–pathogen model. Cellular microbiology, 2003. 5(7): p. 435-444.
    6. Alegado, R.A., et al., The two‐component sensor kinase KdpD is required for Salmonella typhimurium colonization of Caenorhabditis elegans and survival in macrophages. Cellular microbiology, 2011. 13(10): p. 1618-1637.
    7. Feinbaum, R.L., et al., Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model. PLoS Pathog, 2012. 8(7): p. e1002813.
    8. Wu, K., et al., A correlative analysis of epidemiologic and molecular characteristics of methicillin-resistant Staphylococcus aureus clones from diverse geographic locations with virulence measured by a Caenorhabditis elegans host model. European Journal of Clinical Microbiology & Infectious Diseases, 2013. 32(1): p. 33-42.
    9. Irazoqui, J.E., J.M. Urbach, and F.M. Ausubel, Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nature Reviews Immunology, 2010. 10(1): p. 47-58.
    10. Nguyen, Y. and V. Sperandio, Enterohemorrhagic E. coli (EHEC) pathogenesis. Shiga toxin-producing Escherichia coli in human, cattle and foods. Strategies for detection and control, 2014.
    11. James D. McGhee, T.C.e.i.M., 2007), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.7.1, http://www.wormbook.org.
    12. Kodama, T., [Mechanism of A/E lesion formation produced by enterohemorrhagic Escherichia coli: O157--role of EspB, Tir and cortactin]. Nihon rinsho. Japanese journal of clinical medicine, 2002. 60(6): p. 1101-1107.
    13. Chou, T.C., et al., Enterohaemorrhagic Escherichia coli O157: H7 Shiga‐like toxin 1 is
    required for full pathogenicity and activation of the p38 mitogen‐activated protein kinase pathway in Caenorhabditis elegans. Cellular microbiology, 2013. 15(1): p. 82-97.
    14. Zhang, H., et al., Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nature Cell Biology, 2011. 13(10): p. 1189-1201.
    15. MacQueen, A., et al., ACT-5 is an essential Caenorhabditis elegans actin required for intestinal microvilli formation. Molecular biology of the cell, 2005. 16(7): p. 3247-3259.
    16. Willis, J.H., et al., Conditional dominant mutations in the Caenorhabditis elegans gene act-2 identify cytoplasmic and muscle roles for a redundant actin isoform. Molecular biology of the cell, 2006. 17(3): p. 1051-1064.
    17. Mostowy, S. and A.R. Shenoy, The cytoskeleton in cell-autonomous immunity: structural determinants of host defence. Nature Reviews Immunology, 2015.
    18. Rottner, K., et al., Pathogen‐induced actin filament rearrangement in infectious diseases. The Journal of pathology, 2004. 204(4): p. 396-406.
    19. Shimada, O., et al., Rearrangements of actin cytoskeleton during infection with Escherichia coli O157 in macrophages. Cell structure and function, 1999. 24(5): p. 237-246.
    20. Chen, Y.-Q., et al., The effect of enterohemorrhagic E. coli infection on the cell mechanics of host cells. PloS one, 2014. 9(11): p. e112137.
    21. Reading, N.C., et al., The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis. Proceedings of the National Academy of Sciences, 2009. 106(14): p. 5889-5894.
    22. Garmendia, J., G. Frankel, and V.F. Crepin, Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infection and immunity, 2005. 73(5): p. 2573-2585.
    23. Takenawa, T. and H. Miki, WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. Journal of cell science, 2001. 114(10): p. 1801-1809.
    24. Higgs, H.N. and T.D. Pollard, Regulation of actin polymerization by Arp2/3 complex and WASp/Scar proteins. Journal of Biological Chemistry, 1999. 274(46): p. 32531-32534.
    25. Rohatgi, R., et al., The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell, 1999. 97(2): p. 221-231.
    26. Bubb, M.R., et al., Depolymerization of actin filaments by profilin effects of profilin on capping protein function. Journal of Biological Chemistry, 2003. 278(27): p.
    24629-24635.
    27. Ono, S., Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. International review of cytology, 2007. 258: p.1-82.
    28. Papakonstanti, E. and C. Stournaras, Cell responses regulated by early reorganization of actin cytoskeleton. FEBS letters, 2008. 582(14): p. 2120-2127.
    29. 劉邦渝,全基因體分析線蟲對細菌致病因子的宿主反應,生物化學暨分子生物學研究所,國立成功大學,2013
    30. Errico, A., et al., Identification of substrates for cyclin dependent kinases. Advances in enzyme regulation, 2010. 50(1): p. 375-399.
    31. Taguchi, N., et al., Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. Journal of Biological Chemistry, 2007. 282(15):p. 11521-11529.
    32. Cho, B., et al., CDK5-dependent inhibitory phosphorylation of Drp1 during neuronal maturation. Experimental & molecular medicine, 2014. 46(7): p. e105.
    33. Boxem, M., Cyclin-dependent kinases in C. elegans. Cell division, 2006. 1(1): p. 1.
    34. Lew, D.J. and S. Kornbluth, Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Current opinion in cell biology, 1996. 8(6): p.795-804.
    35. Perna, N.T., et al., Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature, 2001. 409(6819): p. 529-533.
    36. Strockbine, N.A., et al., Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infection and immunity, 1986. 53(1): p. 135-140.
    37. Tarailo-Graovac, M. and N. Chen, Proper cyclin B3 dosage is important for precision of metaphase-to-anaphase onset timing in Caenorhabditis elegans. G3: Genes|Genomes| Genetics, 2012. 2(8): p. 865-871.
    38. Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p.71-94.
    39. Bischof, L.J., D.L. Huffman, and R.V. Aroian, Assays for toxicity studies in C. elegans with Bt crystal proteins. C. elegans: Methods and Applications, 2006: p. 139-154.
    40. Anyanful, A., et al., Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene. Molecular microbiology, 2005. 57(4): p. 988-1007.
    41. Bellier, A., et al., Hypoxia and the hypoxic response pathway protect against pore-forming toxins in C. elegans. PLoS Pathog, 2009. 5(12): p. e1000689.
    42. Chen, C.-S., et al., WWP-1 is a novel modulator of the DAF-2 insulin-like signaling network involved in pore-forming toxin cellular defenses in Caenorhabditis elegans. PloS one, 2010. 5(3): p. e9494.
    43. Qian, W., et al., Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. J Cell Sci, 2012. 125(23): p. 5745-5757.
    44. Westrate, L.M., et al., Persistent mitochondrial hyperfusion promotes G2/M accumulation and caspase-dependent cell death. PLoS One, 2014. 9(3): p. e91911.
    45. Kõivomägi, M., et al., Dynamics of Cdk1 substrate specificity during the cell cycle. Molecular cell, 2011. 42(5): p. 610-623.
    46. Otera, H., N. Ishihara, and K. Mihara, New insights into the function and regulation of mitochondrial fission. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2013. 1833(5): p. 1256-1268.
    47. Marchès, O., et al., Enteropathogenic and enterohaemorrhagic Escherichia coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition. Molecular microbiology, 2003. 50(5): p. 1553-1567.
    48. Blasche, S., et al., The EHEC-host interactome reveals novel targets for the translocated intimin receptor. Scientific reports, 2014. 4.

    下載圖示 校內:2021-08-11公開
    校外:2021-08-11公開
    QR CODE