簡易檢索 / 詳目顯示

研究生: 王思翰
Wang, Szu-Han
論文名稱: 生醫鈦合金(Ti-12Mo-6Zr-2Fe)在不同溫度下之高速撞擊特性與微觀組織
Dynamic impact response and microstructural evolution of Ti-12Mo-6Zr-2Fe biomedical alloy under high strain rate and various temperatures
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 120
中文關鍵詞: Ti-12Mo-6Zr-2Fe合金霍普金森桿高溫高應變速率差排密度亞穩定型β態生醫鈦合金
外文關鍵詞: Ti-12Mo-6Zr-2Fe, dislocation density, spilt Hopkinson pressure bar, high temperature, high strain rate
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文係以利用霍普金森高速撞擊試驗機及加熱裝置,來探討Ti-12Mo-6Zr-2Fe第三代生醫鈦合金在不同溫度與高應變速率荷載下之塑性變形之行為與微觀結構之分析。分別於實驗溫度25°C、450°C、900°C及應變速率1000s-1、2000s-1、3000 s-1條件下,進行高速撞擊實驗,藉此分析材料在進行塑變行為中之巨觀機械性質變化,再利用(OM、TEM)對微觀結構進行分析,了解應變速率及溫度對材料塑性變形行為與微觀結構之影響;最後再藉由構成方程式來描述巨觀及微觀之間的關係。
    根據實驗結果顯示,Ti-12Mo-6Zr-2Fe於相同溫度下,其塑流應力值、應變速率敏感性係數、加工硬化率、及溫度敏感性係數與理論溫升量,皆隨應變速率上升而上升;而當應變速率固定時,其塑流應力值、應變速率敏感性係數、加工硬化率、溫度敏感性係數與理論溫升量,皆隨溫度的上升而下降。反觀熱活化體積與活化能,在固定溫度條件下,其值隨應變速率上升而下降;在固定應變速率之下,則隨溫度上升而上升。最後各實驗條件下之塑變行為皆可使用Zerilli-Armstrong構成方程式進行模擬,並可作為往後工程模擬分析時之應用。
    在微觀方面本次實驗使用光學顯微鏡(OM)對金相進行觀察,可發現本材料為介穩態之Beta相鈦合金,加熱至Beta轉換溫度(754°C)後可藉由快速冷卻之方法保持純Beta相,但在持續的加熱過程中將出現alpha相與omega相之相結合結構;而在穿透式電子顯微鏡(TEM)觀察下,可發現其差排密度隨著應變速率上升而上升,隨著溫度下降而下降。最後結合巨觀與微觀之結果顯示,Bailey-Hirsch方程式可描述塑流應力值與差排密度兩者之間的關係,透過穿透式電子顯微鏡的觀測,材料在遭受撞擊後差排會糾結在一起,因此差排密度將隨著應變速率的上升而增加,此外隨著應變速率的上升,甚至可觀察到差排環的產生。

    In this study, Ti-12Mo-6Zr-2Fe was tested under different strain rates ranging from 1000s-1 to 3000s-1 and different temperatures of 25°C, 450°C, and 900°C by using split-Hopkinson pressure bar. The Aim is to investigate its dynamic impact response and microstructural evolution.
    The experimental results reveal that strain rates, strain and temperature affect the mechanical properties of Ti-12Mo-6Zr-2Fe alloy strongly. The Zerilli-Armstrong constitutive law can be used to perfectly describe the deformation behave of this material under different strain rates, strains, and temperatures. Moreover, the flow stress, strain rate sensitivity, work hardening rate, theoretical temperature rise, and temperature sensitivity all increase with increasing strain rate, but decrease with increasing temperature. However, the activation energy and the thermal activation volume is found to decrease with increasing strain rate and increase with increasing temperature.
    The optical microstructure shows that Ti-12Mo-6Zr-2Fe has a pure β type at room temperature. However with the increasing temperature it transfers into Hcp type. Above β transfer temperature(754°C), a pure β type appears. The transmission electron microscopic observations reveal that the dislocation density increases with the decreasing temperature or the increasing strain rate. The relationship between the stress and the dislocation density can be expressed by using Bailey-Hirsch equation.

    中文摘要 I Dynamic impact response and microstructural evolution of Ti-12Mo-6Zr-2Fe biomedical alloy under high strain rate and various temperatures III 致謝 XI 總目錄 XIII 表目錄 XVI 圖目錄 XVII 符號說明 XXIII 第一章 前言 1 第二章 理論與文獻回顧 4 2-1 鈦與鈦合金之介紹 4 2-1-1 生醫鈦合金介紹 5 2-1-2 Ti-12Mo-6Zr-2Fe合金介紹 6 2-1-3 Ti-12Mo-6Zr-2Fe合金成份之影響[23-25] 7 2-2 塑性變形之機械測試類別 7 2-2-1 靜態或極低之應變速率(10-8<ε<10-5 s-1): 8 2-2-2 低速之應變速率(10-5<ε<100 s-1): 8 2-2-3 中速之應變速率(100<ε<102 s-1): 8 2-2-4 高速之應變速率(102<ε<104 s-1): 8 2-2-5 極高速之應變速率(104<ε<107 s-1): 9 2-3一維波傳理論 9 2-4霍普金森撞擊試驗機之原理 11 2-5材料塑變行為特性 13 2-5-1 恆溫機制 14 2-5-2熱活化機制 15 2-5-3差排黏滯機制 16 2-6構成方程式 17 2-6-1 Ludwik model[38-40] 18 2-6-2 Sokolosky& Malvern model[40] 18 2-6-3 Zerilli-Armstrong model[41, 42] 18 2-6-4 Johnson-Cook model[43-46] 19 第三章 實驗方法及步驟 33 3-1 實驗流程 33 3-2 實驗儀器與設備 33 3-2-1 霍普金森撞擊試驗機 33 3-2-2 研磨拋光機 35 3-2-3 慢速切割機 35 3-2-4 雙噴射式電解拋光機 36 3-2-5 CNC放電加工線切割機 36 3-2-6 光學顯微鏡 36 3-2-7 加熱爐 37 3-2-8 穿透式電子顯微鏡 37 3-3 實驗步驟 38 3-3-1 實驗試件製備 38 3-3-2動態衝擊試驗 38 3-3-3試件金相之觀察(OM) 39 3-3-4穿透式電子顯微鏡(TEM)試片製備 39 第四章 實驗結果與討論 41 4-1應力-應變曲線 41 4-2加工硬化率 42 4-3應變速率敏感性係數 43 4-4熱活化體積 45 4-5活化能 47 4-6溫度敏感性係數 48 4-7理論溫升量 49 4-8材料構成方程式 50 4-9光學顯微鏡金相組織觀察(OM) 52 4-10穿透式電子顯微鏡(TEM)結構觀察 53 第五章 結論 112 參考文獻 115 表目錄 表2-1 生醫鈦合金機械性質比較[3] 20 表2-2 Ti-12Mo-6Zr-2Fe合金組成成分之物理常數 21 表2-3 熱活化機制下之熱活化體積v*值與其對應變形方式[18] 22 表4-1 Ti-12Mo-6Zr-2Fe在不同實驗條件下之塑流應力值 57 表4-2 Ti-12Mo-6Zr-2Fe在不同實驗條件下之加工硬化率 57 表4-3 Ludwik模式所得之材料參數A、B、n值 58 表4-4 Ti-12Mo-6Zr-2Fe在不同實驗條件下之應變速率敏感性係數 58 表4-5 Ti-12Mo-6Zr-2Fe在不同實驗條件下之熱活化體積v*/b3 59 表4-6 Ti-12Mo-6Zr-2Fe在應變量ε= 0.05與0.1時之活化能 59 表4-8 Ti-12Mo-6Zr-2Fe在不同實驗條件下之理論溫升量 60 表4-9 Ti-12Mo-6Zr-2Fe在ε= 0.05之構成方程式與實驗值誤差 61 表4-10 Ti-12Mo-6Zr-2Fe在ε= 0.075之構成方程式與實驗值誤差 62 表4-11 Ti-12Mo-6Zr-2Fe在ε= 0.1之構成方程式與實驗值誤差 63 表4-12 Ti-12Mo-6Zr-2Fe在ε= 0.15之構成方程式與實驗值誤差 64 表4-13 Ti-12Mo-6Zr-2Fe在不同實驗條件下之晶粒尺寸 65 表4-14 Ti-12Mo-6Zr-2Fe在不同實驗條件下之差排密度 65 圖目錄 圖1-1 高速撞擊於機械加工製程上之應用[1] 3 圖1-2 高速撞擊於國防軍事上之應用[1] 3 圖2-1 鈦合金相變化圖[1] 23 圖2-2 不同添加物對鈦合金性質的影響[15] 24 圖2-3 各類生醫鈦合金之彈性模數[10] 25 圖2-4 元素之生物相容性比較圖[10] 25 圖2-5 不同應變速率區間對應之測試方法[1] 26 圖2-6 不同應變速率區間對應之塑變行為與機械測試方法[22] 27 圖2-7 一維縱向應力波傳播示意圖[1] 28 圖2-8 霍普金森試驗機示意圖[14] 28 圖2-9 示波器讀取之波形示意圖 29 圖2-10 桿件內部應力波傳遞示意圖 29 圖2-11 材料塑性變形機制與應變速率及溫度之關係圖[31] 30 圖2-12 軟鋼在不同溫度下,降伏強度與應變速率之關係[16] 30 圖2-13 應變速率對材料變形機制之影響[16] 31 圖2-14 差排越過長短距離能障所需之外加應力分佈 31 圖2-15 差排越過長短距離能障所需之外加應力分佈[1] 32 圖3-1 Ti-12Mo-6Zr-2Fe動態撞擊實驗流程圖 40 圖3-2 實驗用試片外觀示意圖 40 圖4-1 實驗溫度25°C下之應力-應變曲線 66 圖4-2 實驗溫度450°C下之應力-應變曲線 66 圖4-3 實驗溫度900°C下之應力-應變曲線 67 圖4-4 應變速率1000s-1下之應力-應變曲線 67 圖4-5 應變速率2000s-1下之應力-應變曲線 68 圖4-6 應變速率3000s-1下之應力-應變曲線 68 圖4-7 各實驗條件之應力-應變曲線 69 圖4-8 實驗溫度25°C下之加工硬化率曲線 69 圖4-9 實驗溫度450°C下之加工硬化率曲線 70 圖4-10 實驗溫度900°C下之加工硬化率曲線 70 圖4-11 應變速率1000s-1下之加工硬化率曲線 71 圖4-12 應變速率2000s-1下之加工硬化率曲線 71 圖4-13 應變速率3000s-1下之加工硬化率曲線 72 圖4-14 加工硬化係數(n)與應變速率之關係 72 圖4-15 加工硬化係數(n)與溫度之關係 73 圖4-16 應變速率1000s-1-2000s-1之應變速率敏感性係數曲線 73 圖4-17 應變速率2000s-1-3000s-1之應變速率敏感性係數曲線 74 圖4-18 各實驗條件下之應變速率敏感性係數曲線 74 圖4-19 應變速率1000s-1-2000s-1之熱活化體積曲線 75 圖4-20 應變速率2000s-1-3000s-1之熱活化體積曲線 75 圖4-21 各實驗條件下之熱活化體積曲線 76 圖4-22 固定應變量0.025下,塑流應力值與溫度之關係 76 圖4-23 固定應變量0.05下,塑流應力值與溫度之關係 77 圖4-24 固定應變量0.075下,塑流應力值與溫度之關係 77 圖4-25 固定應變量0.1下,塑流應力值與溫度之關係 78 圖4-26 固定應變量下,活化能與塑流應力值之關係 78 圖4-27 不同溫度區間下之溫度敏感性係數 79 圖4-28 實驗溫度25℃下之理論溫升量曲線 79 圖4-29 實驗溫度450℃下之理論溫升量曲線 80 圖4-30 實驗溫度900℃下之理論溫升量曲線 80 圖4-31 應變速率1000s-1下之理論溫升量曲線 81 圖4-32 應變速率2000s-1下之理論溫升量曲線 81 圖4-33 應變速率3000s-1下之理論溫升量曲線 82 圖4-34 實驗溫度25℃下之實驗值與理論值差異 82 圖4-35 實驗溫度450℃下之實驗值與理論值差異 83 圖4-36 實驗溫度900℃下之實驗值與理論值差異 83 圖4-37 應變速率1000s-1下之實驗值與理論值差異 84 圖4-38 應變速率2000s-1下之實驗值與理論值差異 84 圖4-39 應變速率3000s-1下之實驗值與理論值差異 85 圖4-40 各實驗條件下之實驗值與理論值差異 85 圖4-41 母材,100倍之金相圖 86 圖4-42 母材,200倍之金相圖 86 圖4-43 實驗溫度25℃,應變速率1000 s-1,100倍之金相圖 87 圖4-44 實驗溫度25℃,應變速率1000 s-1,200倍之金相圖 87 圖4-45 實驗溫度25℃,應變速率2000 s-1,100倍之金相圖 88 圖4-46 實驗溫度25℃,應變速率2000 s-1,200倍之金相圖 88 圖4-47 實驗溫度25℃,應變速率3000 s-1,100倍之金相圖 89 圖4-48 實驗溫度25℃,應變速率3000 s-1,200倍之金相圖 89 圖4-49 實驗溫度450℃,應變速率1000 s-1,100倍之金相圖 90 圖4-50 實驗溫度450℃,應變速率1000 s-1,200倍之金相圖 90 圖4-51 實驗溫度450℃,應變速率2000 s-1,100倍之金相圖 91 圖4-52 實驗溫度450℃,應變速率2000 s-1,200倍之金相圖 91 圖4-53 實驗溫度450℃,應變速率3000 s-1,100倍之金相圖 92 圖4-54 實驗溫度450℃,應變速率3000 s-1,200倍之金相圖 92 圖4-55 實驗溫度900℃,應變速率1000 s-1,100倍之金相圖 93 圖4-56 實驗溫度900℃,應變速率1000 s-1,200倍之金相圖 93 圖4-57 實驗溫度900℃,應變速率2000 s-1,100倍之金相圖 94 圖4-58 實驗溫度900℃,應變速率2000 s-1,200倍之金相圖 94 圖4-59 實驗溫度900℃,應變速率3000 s-1,100倍之金相圖 95 圖4-60 實驗溫度900℃,應變速率3000 s-1,200倍之金相圖 95 圖4-61 母材, 10000倍之TEM圖 96 圖4-62 母材, 20000倍之TEM圖 96 圖4-63 母材之晶格繞射圖 97 圖4-64 實驗溫度25℃,應變速率1000 s-1,10000倍之TEM圖 97 圖4-65 實驗溫度25℃,應變速率1000 s-1,20000倍之TEM圖 98 圖4-66 實驗溫度25℃,應變速率1000 s-1之晶格繞射圖 98 圖4-67 實驗溫度25℃,應變速率2000 s-1,10000倍之TEM圖 99 圖4-68 實驗溫度25℃,應變速率2000 s-1,20000倍之TEM圖 99 圖4-69 實驗溫度25℃,應變速率2000 s-1之晶格繞射圖 100 圖4-70 實驗溫度25℃,應變速率3000 s-1,10000倍之TEM圖 100 圖4-71 實驗溫度25℃,應變速率3000 s-1,20000倍之TEM圖 101 圖4-72 實驗溫度25℃,應變速率3000 s-1之晶格繞射圖 101 圖4-73 實驗溫度450℃,應變速率1000 s-1,10000倍之TEM圖 102 圖4-74 實驗溫度450℃,應變速率1000 s-1,20000倍之TEM圖 102 圖4-75 實驗溫度450℃,應變速率1000 s-1之晶格繞射圖 103 圖4-76 實驗溫度450℃,應變速率2000 s-1,10000倍之TEM圖 103 圖4-77 實驗溫度450℃,應變速率2000 s-1,20000倍之TEM圖 104 圖4-78 實驗溫度450℃,應變速率2000 s-1之晶格繞射圖 104 圖4-79 實驗溫度450℃,應變速率3000 s-1,10000倍之TEM圖 105 圖4-80 實驗溫度450℃,應變速率3000 s-1,20000倍之TEM圖 105 圖4-81 實驗溫度450℃,應變速率3000 s-1之晶格繞射圖 106 圖4-82 實驗溫度900℃,應變速率1000 s-1,10000倍之TEM圖 106 圖4-83 實驗溫度900℃,應變速率1000 s-1,20000倍之TEM圖 107 圖4-84 實驗溫度900℃,應變速率1000 s-1之晶格繞射圖 107 圖4-85 實驗溫度900℃,應變速率2000 s-1,10000倍之TEM圖 108 圖4-86 實驗溫度900℃,應變速率2000 s-1,20000倍之TEM圖 108 圖4-87 實驗溫度900℃,應變速率2000 s-1之晶格繞射圖 109 圖4-88 實驗溫度900℃,應變速率3000 s-1,10000倍之TEM圖 109 圖4-89 實驗溫度900℃,應變速率3000 s-1,20000倍之TEM圖 110 圖4-90 實驗溫度900℃,應變速率3000 s-1之晶格繞射圖 110 圖4-91 加工硬化應力與差排密度之關係 111

    [1]M. A. Meyers, Dynamic behavior of materials: John wiley & sons, 1994.
    [2]H. Kolsky, "An investigation of the mechanical properties of materials at very high rates of loading," Proceedings of the Physical Society. Section B, vol. 62, p. 676, 1949.
    [3]B. Butcher and C. Karnes, "Strain‐Rate Effects in Metals," Journal of Applied Physics, vol. 37, pp. 402-411, 1966.
    [4]F. E. Hauser, "Techniques for measuring stress-strain relations at high strain rates," Experimental Mechanics, vol. 6, pp. 395-402, 1966.
    [5]D. Steinberg, S. Cochran, and M. Guinan, "A constitutive model for metals applicable at high‐strain rate," Journal of Applied Physics, vol. 51, pp. 1498-1504, 1980.
    [6]M. Niinomi, "Mechanical properties of biomedical titanium alloys," Materials Science and Engineering: A, vol. 243, no. 1-2, pp. 231-236, 1998.
    [7]K. K. Wang, "Microstructure and properties of a New Beta Titanium Alloy, Ti-12Mo-6Zr-2Fe, Developed for Surgiacl Implants ," Medical Applications ASTM STP 1272, S. A. Brown and J. E. Lemons, Eds., American Society for Testing and materials, 1996.
    [8]K. K. Wang, "The use of titanium for medical applications in the USA," Matericals Science and Engineering A213(1996) 134-137.
    [9]Xueyuan Yang, Christopher R. Hutchinson, "Corrosion-wear of β-Ti alloy TMZF(Ti-12Mo-6Zr-2Fe) in simulated body fluid," Acta biomaterial 42(2016)429-439.
    [10]M. P. C Leyens, Titanium and titanium alloys: fundamentals and applications. 2003.
    [11] J. R. Jorge, V. A. Barao, J. A. Delben, L. P. Faverani, T. P. Queiroz, and W. G. Assuncao, "Titanium in dentistry: historical development, state of the art and future perspectives," J Indian Prosthodont Soc, vol. 13, no. 2, pp. 71-7, Jun 2013.
    [12]C. Ouchi, H. Iizumi, and S. Mitao, "Effects of ultra-high purification and addition of interstitial elements on properties of pure titanium and titanium alloy,"Materials Science and Engineering: A, vol. 243, no. 1-2, pp. 186-195, 1998.
    [13]E. Eisenbarth, D. Velten, M. Muller, R. Thull,and J. Breme."Biocompatibility of β-stabilizing elements of titanium alloys," Biomaterials, vol. 25, no. 26, pp.5705-5713,2004.
    [14] Yufeng Zheng, M.S. ,"Nucleation Mechanisms of Refined Alpha Microstructure in Beta Titanium Alloys," 2013, Doctor of Philosophy, Ohio State University,Materials Science and Engineering.
    [15] M. J. Donachie, Titanium: a technical guide. ASM international, 2000
    [16] A. Choubey, R. Balasubramaniam, and B. Basu, "Effect of replacement of V by Nb and Fe on the electrochemical and corrosion behavior of Ti–6Al–4V in simulated physiological environment," Journal of Alloys and Compounds, vol. 381, no. 1-2, pp. 288-294, 2004.
    [17] K. Bordji et al., "Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5 Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts," Biomaterials, vol. 17, no. 9, pp. 929-940, 1996.
    [18] H. Conrad, "Thermally activated deformation of metals," JOM, vol. 16, pp. 582-588, 1964.
    [19] W. Ferguson, A. Kumar, and J. Dorn, "Dislocation damping in aluminum at high strain rates," Journal of Applied Physics, vol. 38, pp. 1863-1869, 1967.
    [20] M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, "Ti based biomaterials, the ultimate choice for orthopaedic implants – A review," Progress in Materials Science, vol. 54, pp. 397-425, 2009.
    [21] M. Niinomi, "Mechanical properties of biomedical titanium alloys," Materials Science and Engineering: A, vol. 243, no. 1-2, pp. 231-236, 1998.
    [22] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, "Design and mechanical properties of new β type titanium alloys for implant materials," Materials Science and Engineering: A, vol. 243, no. 1-2, pp. 244-249, 1998.
    [23] X. H. Min ,S. Emura ,N. Sekido ,T. Nishimura ,K. Tsuchiya ,K. Tsuzaki, "Effect of Fe addition on tensile deformation mode and crevice corrosion resistance in Ti-15Mo alloy,"Material Science and Engineering A527(2010)2693-2701.
    [24] Wen-Fu Ho ,Shih-Ching Wu ,Shih-Kuang Hsu ,Yu-chi Li ,Hsueh-Chuan Hsu,"Effects of molubdenum content on the structure and mechanical properties of as-cast Ti-10Zr-based alloys for biomedical applications," Materical Science and Engineering C 32(2012)517-522.
    [25]P. Mohan, Abou Bakr Elshalakany, T.A. Osman, V. Amigo, Alaa Mohamed , "Effect of fe content, sintering temperature and power processing on the microstructure, fracture and mechanical behaviors of Ti-Mo-Zr-Fe alloys," Joumal of Alloys and Compounds.
    [26] U. S. Lindholm, "High strain rate tests," Measurement of mechanical properties, vol. 5, pp. 199-271, 1971.
    [27] U. Lindholm and L. Yeakley, "High strain-rate testing: tension and compression," Experimental Mechanics, vol. 8, pp. 1-9, 1968.
    [28]J. Achenbach, Wave propagation in elastic solids vol. 16: Elsevier, 2012.
    [29]B. Dodd, Adiabatic shear localization: occurrence, theories, and applications: Pergamon Press, 1992.
    [30]W.-S. Lee and C.-F. Lin, "Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures," Materials Science and Engineering: A, vol. 241, pp. 48-59, 1998.
    [31]A. Kumar, F. Hauser, and J. Dorn, "Viscous drag on dislocations in aluminum at high strain rates," Acta Metallurgica, vol. 16, pp. 1189-1197, 1968.
    [32] J. Campbell and W. Ferguson, "The temperature and strain-rate dependence of the shear strength of mild steel," Philosophical Magazine, vol. 21, pp. 63-82, 1970.
    [33] R. Broudy, "Dislocations and Mechanical Properties of Crystals," Journal of the American Chemical Society, vol. 80, pp. 5009-5010, 1958.
    [34] H. Conrad, "Thermally activated deformation of metals," JOM, vol. 16, pp. 582-588, 1964.
    [35] W. Ferguson, A. Kumar, and J. Dorn, "Dislocation damping in aluminum at high strain rates," Journal of Applied Physics, vol. 38, pp. 1863-1869, 1967.
    [36]J. Campbell and A. Dowling, "The behaviour of materials subjected to dynamic incremental shear loading," Journal of the Mechanics and Physics of Solids, vol. 18, pp. 43-63, 1970.
    [37]J. Campbell, "Dynamic plasticity: macroscopic and microscopic aspects," Materials Science and Engineering, vol. 12, pp. 3-21, 1973.
    [38]P. Ludwik, "Elemente der Technologischen Mechanik Julius Springer," Berlin, Germany, 1909.
    [39]Z. Gronostajski, "The constitutive equations for FEM analysis," Journal of Materials Processing Technology, vol. 106, pp. 40-44, 2000
    [40]Y. Bai and B. Dodd, "Adiabatic Shear Localization: Occurrence, Theories and Applications, 1992," ed: Pergamon Press, Oxford.
    [41] ] F. J. Zerilli and R. W. Armstrong, "The effect of dislocation drag on the stress-strain behavior of FCC metals," Acta Metallurgica et Materialia, vol. 40, pp. 1803-1808, 1992.
    [42] R. Liang and A. S. Khan, "A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures," International Journal of Plasticity, vol. 15, pp. 963-980, 1999.
    [43] D. Umbrello, R. M’saoubi, and J. Outeiro, "The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel," International Journal of Machine Tools and Manufacture, vol. 47, pp. 462-470, 2007.
    [44] L. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger, and K. Staudhammer, "A basic approach for strain rate dependent energy conversion including heat transfer effects: An experimental and numerical study," Journal of materials processing technology, vol. 182, pp. 319-326, 2007.
    [45] G. R. Johnson and W. H. Cook, "A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures," in Proceedings of the 7th International Symposium on Ballistics, 1983, pp. 541-547.
    [46]U. Andrade, M. Meyers, and A. Chokshi, "Constitutive description of work-and shock-hardened copper," Scripta metallurgica et materialia, vol. 30, pp. 933-938, 1994.
    [47]Y. Hao et al., "Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6 Zr in relation to α ″martensite," Metallurgical and Materials Transactions A, vol. 33, no. 10, pp. 3137-3144, 2002.
    [48] P. Castany, M.Besse T. Gloriant, "In situ TEM study od dislocation slip in a metastable beta titanium alloy," SciVerse ScienceDirect Scripta Materialia 66(2012) 371-373.
    [49] S. Esmaeili, L. Cheng, A. Deschamps, D. Lloyd, and W. Poole, "The deformation behaviour of AA6111 as a function of temperature and precipitation state," Materials Science and Engineering: A, vol. 319, pp. 461-465, 2001.
    [50] B. Viguier, "Dislocation densities and strain hardening rate in some intermetallic compounds," Materials Science and Engineering: A, vol. 349, no. 1-2, pp. 132-135, 2003.
    [51] D. Chu and J. Morris, "The influence of microstructure on work hardening in aluminum," Acta materialia, vol. 44, no. 7, pp. 2599-2610, 1996.
    [52] U. Andrade, M. Meyers, and A. Chokshi, "Constitutive description of work-and shock-hardened copper," Scripta metallurgica et materialia, vol. 30, no. 7, pp. 933-938, 1994.
    [53] Junheng Gao, Yuhe Huang, Dikai Guan, Alexander J. Knowles, Le Ma, David Dye, W. Mark Rainforth, "eformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate," Acta Materialia(2018).
    [54] W.-S. Lee and C.-Y. Liu, "Comparison of dynamic compressive flow behavior of mild and medium steels over wide temperature range," Metallurgical and materials Transactions A, vol. 36, no. 11, pp. 3175-3186, 2005.
    [55]C. Zener and J. Hollomon, "Effect of strain rate upon plastic flow of steel," Journal of Applied physics, vol. 15, no. 1, pp. 22-32, 1944.
    [56]J. Campbell and W. Ferguson, "The temperature and strain-rate dependence of the shear strength of mild steel," Philosophical Magazine, vol. 21, no. 169, pp. 63-82, 1970.
    [57]S. Nag, R. Banerjee, H.L. Fraser, "Microstructural evolution and strengthening mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys." Material Science and Engineering C 25(2005) 357-362
    [58]Wei Qian Song, Shoujin Sun, Suming Zhu, Gui Wang, James Wang, Matthew S. Dargusch, "Compressive deformation behavior of a near-beta titanium alloy," Materials and Design 34(2012) 739-745.
    [59]R. Ham, "The determination of dislocation densities in thin films," Philosophical Magazine, vol. 6, no. 69, pp. 1183-1184, 1961.
    [60]Y. Tomota, P. Lukas, S. Harjo, J. H. Park, N. Tsuchida, and D. Neov, "In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation," Acta Materialia, vol. 51, no. 3, pp. 819-830, 2003.
    [61]Luis Gracia at al., "Simulation by Finite Elements of bone Remodelling After implantation of Femoral." Engineering and Architecture Faculty, University of Zaragoza,Spain.
    [62]Masatoshi OBA, MD, Yutaka Inaba, MD, PhD, Naomi Kobayashi, MD, PhD, Hiroyuki Ike, MD, Yasuhide Hirata, MD, Masamitsu Tomioka, MD, Tomoyuki Saito, MD, PhD., "Influence Of Stem Size and Canal Geometry on The Fixation of Cementless Tapered-wedge Stems: Study of Finite Element Analyses and Postoperative Bone Mineral Density Change of The Femur." Yokohama City University, Yokohama, Kanagawa, Japan.
    [63]C.H. Wang, C.D. Yang, M. Liu, X.Li, P. F. Hu, A. M. Russell, G. H. Cao, "Martensitic microstructures and mechanical properties of as-quenched metastable beta-type Ti-Mo alloys," J Mater Sci(2016)51:6886-6896.
    [64]M. Kassner and K. Kyle, "Taylor hardening in five power law creep of metals and class M alloys," in Nano and Microstructural Design of Advanced Materials: Elsevier, 2003, pp. 255-271.
    [65]M. Kassner, "A case for Taylor hardening during primary and steady-state creep in aluminium and type 304 stainless steel," Journal of Materials Science, vol. 25, no. 4, pp. 1997-2003, 1990
    [66]J. Gubicza, N. Chinh, J. Lábár, S. Dobatkin, Z. Hegedűs, and T. Langdon, "Correlation between microstructure and mechanical properties of severely deformed metals," Journal of Alloys and Compounds, vol. 483, no. 1-2, pp. 271-274, 2009.

    無法下載圖示 校內:2024-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE