| 研究生: |
蕭世杰 Hsiao, Shih-Chieh |
|---|---|
| 論文名稱: |
鋁合金再結晶模擬及深沖凸耳預測之研究 Recrystallization Simulation and Earing Prediction of Aluminum Alloys During Deep Drawing |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 細胞自動機 、集合組織 、鋁合金 、不穩定準則 、非均勻遷移率 、深沖 、解析模型 |
| 外文關鍵詞: | cellular automaton, texture, aluminum alloy, instability criterion, non-uniform mobility, deep drawing, analytical model |
| 相關次數: | 點閱:71 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著鋁合金產品研發及製造的需求日漸增加,製程模擬在工業界扮演的腳色更顯重要。理論上,可透過將生產線的連續製程拆解,並將各製程以模擬的方式進行虛擬製程,藉此降低研發時間及原料成本。在常見的鋁合金製程中,最終成型前的退火製程對產品的物理性質存在顯著影響,而退火製程主要涉及金屬的再結晶行為。由於目前對金屬再結晶行為仍有多種解釋方法,其反映人們對退火再結晶相關理論及機制的不完全了解,因此限制了再結晶模型於工業上模擬退火的實際應用。本研究利用基於細胞自動機的理論建構再結晶模型,考慮鋁合金退火時的再結晶成核及成長行為,來模擬AA1100鋁合金的靜態再結晶時的微結構和集合組織演化。另一方面,本研究結合晶體塑性、Schmid定律以及Sachs理論建立鋁合金凸耳預測模型,並以此模型預測單晶以及多晶AA5151鋁合金的深沖杯緣輪廓。
於再結晶成核模型中,在熱力學及動力學不穩定準則的基礎上,額外考慮了機械不穩定準則,使得成核驅動力能障由一整體平均數值變為局部動態數值,且整體的成核驅動力下降,成核點由99.5%降至37.5%。集合組織方面,當整體成核驅動力下降,再結晶集合組織方位的變形區域仍然有足夠高的驅動力進行成核。此外,成核點周圍有較高比例的晶粒為變形集合組織且較低比例的晶粒為再結晶集合組織,顯示機械不穩定準則的引入,除了可促進再結晶集合組織方位晶粒的成核,亦有利於該孕核藉由消耗鄰近變形集合組織晶粒而成長。Cube和RC20°RD成核點分別顯示與相鄰變形區域有著不同的旋轉軸關係,前者旋轉軸包含<110>, <111>和<112>,而後者旋轉軸包含<122>和<133>,旋轉角分布範圍為45°~65°。
於再結晶成長模型中,本研究設計三種晶界遷移率來探討低角度及高角度不均勻晶界遷移率對鋁合金再結晶微結構和集合組織的影響。結果顯示,低角度和高角度晶界均能促進再結晶方位晶粒的成長。在Cube和RC20°RD集合組織中,高角度晶界相對低角度晶界影響比例為1.40和1.33。在微結構中,模擬結果捕捉到Cube因考慮了以旋轉軸為<111>和方位差為40°時的選擇性成長而有明顯較大的晶粒尺寸。而RC20°RD則未因此選擇性成長而有明顯晶粒尺寸上的變化。由集合組織構分析得知,Cube和RC20°RD集合組織主要透過高角度晶界遷移而形成。
於深沖杯緣輪廓預測模型中,本研究考慮不同應力比值、應變硬化指數以及方位分布對各單晶的影響。C*、S*、Cube和RC20°RD集合組織對應力比值的變化較敏感,而C*、S*、B*、RC20°RD和G集合組織對硬化指數得變化較敏感。本研究最終以應力比值-0.3及硬化指數0.3來修正模型。考慮方位分布後, S*和B*杯緣輪廓的凸耳向45°收斂,即C*凸耳的穩定位置,而RC20°RD和G杯緣輪廓的凸耳向0°/90°收斂,即Cube凸耳的穩定位置。C*和Cube穩定的杯緣輪廓顯示其各自鄰近方位均有相近的杯緣輪廓及凸耳角度。最終,本研究以AA5151中的六個主要集合組織以及退火AA5151中集合組織體積分率預測出不同退火時間鋁材深沖的杯緣輪廓。結果可反映隨退火時間增加,0° 和90°凸耳的形成以及45°凸耳的消失,預測耳率對實驗耳率呈線性關係,斜率為5.27。
In recent years, as the demand for research and manufacturing development of aluminum alloys increases, the role of process simulation in the industry become increasingly important. Theoretically, the production line can be dismantled by parts, which can be virtually processed by simulation. Therefore, the development time and the cost can be reduced. Among the major processes in aluminum alloys, the final annealing process prior to the forming process has significant influence on the physical properties of the products. The annealing process is directly related to the recrystallization behavior of metals. Currently, there are still various explanations for recrystallization, which reveal the incomplete understanding to the theory and mechanism of recrystallization. The practical application of simulating the recrystallization during annealing process in industry is thus limited. In this work, on one hand, the evolutions of microstructure and texture of AA1100 during static recrystallization process are investigated using a recrystallization model based on cellular automata theory with consideration of nucleation and growth during recrystallization of aluminum alloys. On the other hand, an earing model is built by considering the crystal plasticity, Schmid law and Sachs theory to predict the deep drawn profiles of single crystals and annealed polycrystalline AA5151 aluminum alloy.
In the nucleation model, based on the thermodynamic and kinetic instability criteria, the additional mechanical instability criterion switches the barrier of driving force in nucleation from an average constant value to various localized dynamic values, resulting in decrease of overall driving force and reduction the number of nucleation site from 99.5% to 37.5%. In the aspect of texture, although the overall driving force decreases, the deformed regions with orientations of recrystallization textures still possess enough driving force for nucleation. In addition, the neighbors of nucleation sites reveal higher fraction of deformation textures- oriented grains and lower fraction of recrystallization textures- oriented grains. This indicates, with the introduction of mechanical instability criterion, not only the nucleation of grains with orientation of recrystallization is promoted, but the consumption of the surrounding deformed grains with orientation of deformation textures is facilitated by further growth of the nuclei. The nuclei of Cube and RC20°RD reveal different relationship of rotation to their deformed neighbors. The former has three rotation axes of <110>, <111> and <112> to neighboring grains, while the latter has two rotation axes of <122> and <133>to neighboring grains. The range of the misorientation is 45°~65°.
In the growth model, three types of mobility are designed for investigation the effect of migration of LAGB and HAGB on microstructure and texture during recrystallization. The results indicate the migration of LAGB and HAGB promotes the growth of grains with orientation of recrystallization textures. The calculated related percentages ratio of HAGB to LAGB for Cube and RC20°RD are 1.40, and 1.33, respectively. The early stage of abnormal grain growth of Cube-oriented grains is captured with consideration of growth selection of misorientation close to 40°/<111>, while the RC20°RD- oriented grains are not promoted under the condition. The microstructure and texture analysis reveal the Cube- and RC20°RD- oriented grains form by migration of HAGB.
In the prediction model for deep drawn profile, the hardening exponent, stress ratio and orientation spread were considered for various single crystals. The components of C*, S*, Cube and RC20°RD are sensitive to the change of stress ratio, and the C*, S*, B*, RC20°RD and G are sensitive to the change of hardening exponent. Finally, the hardening exponent of 0.3 and stress ratio of -0.3 are selected as the parameters for correction. With consideration of orientation spread, the ears of profiles of S* and B* converge towards 45°, which are the location of C*’s ears; the ears of profiles of RC20°RD and G converge towards 0°/90°, which are the locations of Cube’s ears. The stable profiles of C* and Cube indicate the similar profiles of the surrounding orientations. Finally, with profiles and volume fractions of major 6 components, the profiles of annealed AA5151 aluminum alloy are predicted. The profiles display the formation of ears at 0° and 90° and disappearance of ears at 45° as the annealing time increases. The predicted ear ratio and experimental ear ratio are in linear relation with slope of 5.27.
1. O. Engler, L. Löchte, and J. Hirsch, Through-process simulation of texture and properties during the thermomechanical processing of aluminium sheets. Acta Materialia, 2007. 55: pp. 5449-5463.
2. G. Gottstein, Through‐Process Modeling of Materials Fabrication: Philosophy, Current State, and Future Directions. in Microstructural Design of Advanced Engineering Materials. Wiley, Weinheim, Germany 2013: pp. 1-17.
3. O. Engler and V. Randle, Introduction to texture analysis: macrotexture, microtexture, and orientation mapping. CRC press, Florida, USA 2000.
4. G. Tucker, Texture and earing in deep drawing of aluminium. Acta Metallurgica, 1961. 9: pp. 275-286.
5. Z. Wang, L. Zhai, M. Ma, H. Yuan, and W. Liu, Microstructure, texture and mechanical properties of Al/Al laminated composites fabricated by hot rolling. Materials Science and Engineering: A, 2015. 644: pp. 194-203.
6. F.J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena. Elsevier, Massachusetts, USA 2012.
7. J.W. Martin, R.D. Doherty, and B. Cantor, Stability of microstructure in metallic systems. Cambridge University Press, Cambridge, UK 1997.
8. R. Doherty, D. Hughes, F. Humphreys, J.J. Jonas, D.J. Jensen, M. Kassner, W. King, T. McNelley, H. McQueen, and A. Rollett, Current issues in recrystallization: a review. Materials Science and Engineering: A, 1997. 238: pp. 219-274.
9. J. Lytton, K. Westmacott, and L. Potter, The Relation Between Flow Stress And Dislocation Structure During Recovery Of High-Purity Aluminum. Lockheed Missiles And Space Co Palo Alto Calif Materials Sciences Lab, California, USA 1964.
10. T. Furu, R. Ørsund, and E. Nes, Subgrain growth in heavily deformed aluminium—experimental investigation and modelling treatment. Acta metallurgica et materialia, 1995. 43: pp. 2209-2232.
11. P.R. Rios, F. Siciliano Jr, H.R.Z. Sandim, R.L. Plaut, and A.F. Padilha, Nucleation and growth during recrystallization. Materials Research, 2005. 8: pp. 225-238.
12. G. Abbruzzese and K. Lücke, A theory of texture controlled grain growth—I. Derivation and general discussion of the model. Acta Metallurgica, 1986. 34: pp. 905-914.
13. W.G. Burgers, Über den Zusammenhang zwischen Deformationsvorgang und Rekristallisationstextur bei Aluminium. Zeitschrift für Physik, 1931. 67: pp. 605-678.
14. I. Dillamore and H. Katoh, The mechanisms of recrystallization in cubic metals with particular reference to their orientation-dependence. Metal Science, 1974. 8: pp. 73-83.
15. C. Lee, R. Smallman, and B. Duggan, The formation of cube-oriented material and its surrounding in cold rolled FCC metals. Scripta Metallurgica et Materialia, 1993. 29 : pp. 43-48.
16. C. Lee, R. Smallman, and B. Duggan, Deformation banding and formation of cube volumes in cold rolled fcc metals. Materials Science and Technology, 1994. 10: pp. 862-868.
17. H. Weiland and J. Hirsch, Microstructure and local texture in hot rolled aluminum. Textures and Microstructures, 1970. 14: pp. 647-652.
18. H. Vatne, T. Furu, and E. Nes, Nucleation of recrystallised grains from cube bands in hot deformed commercial purity aluminium. Materials science and technology, 1996. 12: pp. 201-210.
19. A. Brahme, PhD thesis. Carnegie Mellon Universtiy, 2005.
20. G. Gottstein, Physical foundations of materials science. Springer Science & Business Media. New York ,USA 2004.
21. C.S. Barrett, Recrystallization texture in aluminum after compression. Transactions of the American Institute of Mining and Metallurgical Engineers, 1940. 137: pp. 128-145.
22. B. Liebmann, K. Lücke, and G. Masing, Untersuchungen über die Orientierungsabhängigkeit der Wachstumsgeschwindigkeit bei der primären Rekristallisation von Aluminium-Einkristallen. International Journal of Materials Research, 1956. 47: pp. 57-63.
23. G. Ibe and K. Lucke, Recrystallization, Grain Growth and Textures. American Society for Metals, Ohio, USA 1966.
24. A.L. Helbert, W. Wang, T. Baudin, F. Brisset, and B. Penelle. Formation and Development of strong Cube Recrystallization Texture in an Aluminium of commercial purity. in Materials Science Forum. 2012. 702: pp. 391-397.
25. A.L. Helbert, W. Wang, F. Brisset, T. Baudin, and R. Penelle, In Situ EBSD Investigation of Recrystallization in a Partially Annealed and Cold‐Rolled Aluminum Alloy of Commercial Purity. Advanced Engineering Materials, 2012. 14: pp. 39-44.
26. S. Wang, E.A. Holm, J. Suni, M.H. Alvi, P.N. Kalu, and A.D. Rollett, Modeling the recrystallized grain size in single phase materials. Acta Materialia, 2011. 59: pp. 3872-3882.
27. E.A. Holm, M.A. Miodownik, and A.D. Rollett, On abnormal subgrain growth and the origin of recrystallization nuclei. Acta Materialia, 2003. 51: pp. 2701-2716.
28. A. Rollett, Overview of modeling and simulation of recrystallization. Progress in materials science, 1997. 42: pp. 79-99.
29. M.A. Miodownik, A review of microstructural computer models used to simulate grain growth and recrystallisation in aluminium alloys. Journal of Light Metals, 2002. 2: pp. 125-135.
30. J. Lv, J.-H. Zheng, V.A. Yardley, Z. Shi, and J. Lin, A review of microstructural evolution and modelling of aluminium alloys under hot forming conditions. Metals, 2020. 10, 1516 : pp. 1-33.
31. V.Y. Novikov and I. Gavrikov, Influence of heterogeneous nucleation on microstructure and kinetics of primary recrystallization. Acta Metallurgica et Materialia, 1995. 43: pp. 973-976.
32. T. Nagai, S. Ohta, K. Kawasaki, and T. Okuzono, Computer simulation of cellular pattern growth in two and three dimensions. Phase Transitions: a Multinational Journal, 1990. 28: pp. 177-211.
33. D. Srolovitz, G. Grest, and M. Anderson, Computer simulation of recrystallization—I. Homogeneous nucleation and growth. Acta Metallurgica, 1986. 34: pp. 1833-1845.
34. P. Peczak, A Monte Carlo study of influence of deformation temperature on dynamic recrystallization. Acta Metallurgica et Materialia, 1995. 43: pp. 1279-1291.
35. A.R. Eivani, J. Zhou, and J. Duczczyk. Combined physical modeling and Monte Carlo simulation of recrystallization of hot deformed AA7020 aluminum alloy. in Materials Science Forum. 2012, 715: pp. 480-485.
36. L. Sieradzki and L. Madej, A perceptive comparison of the cellular automata and Monte Carlo techniques in application to static recrystallization modeling in polycrystalline materials. Computational Materials Science, 2013. 67: pp. 156-173.
37. H.W. Hesselbarth and I. Göbel, Simulation of recrystallization by cellular automata. Acta Metallurgica et Materialia, 1991. 39: pp. 2135-2143.
38. R. Goetz and V. Seetharaman, Modeling dynamic recrystallization using cellular automata. Scripta Materialia, 1998. 38: pp.405-413.
39. R. Ding and Z. Guo, Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization. Acta Materialia, 2001. 49: pp. 3163-3175.
40. D. Raabe, Cellular automata in materials science with particular reference to recrystallization simulation. Annual Review of Materials Research, 2002. 32: pp. 53-76.
41. T. Zhang, S.-h. Lu, J.-b. Zhang, Z.-f. Li, P. Chen, H. Gong, and Y.-x. Wu, Modeling of the static recrystallization for 7055 aluminum alloy by cellular automaton. Modelling and Simulation in Materials Science and Engineering, 2017. 25, 065005: pp: 1-15.
42. L. Liu, Y. Wu, and A.S. Ahmad, A novel simulation of continuous dynamic recrystallization process for 2219 aluminium alloy using cellular automata technique. Materials Science and Engineering: A, 2021. 815, 141256: pp. 1-16.
43. M.H. Shojaeefard, M. Akbari, A. Khalkhali, P. Asadi, and A.H. Parivar, Optimization of microstructural and mechanical properties of friction stir welding using the cellular automaton and Taguchi method. Materials & Design, 2014. 64: pp. 660-666.
44. M. Sitko, K. Banaś, and L. Madej, Scaling scientific cellular automata microstructure evolution model of static recrystallization toward practical industrial calculations. Materials, 2021. 14, 4082: pp.1-13.
45. O. Sukhopar and G. Gottstein. Modeling Recrystallization in Al Alloys: Investigation of Nucleation at Cube Bands. in Materials Science Forum. 2012. 715: pp. 455-460.
46. C. Schäfer, V. Mohles, and G. Gottstein, Modeling the effect of heating rate on recrystallization texture evolution in AA3103. Advanced Engineering Materials, 2010. 12: pp. 981-988.
47. F. Lin, M. Sitko, L. Madej, and L. Delannay, Non-uniform Grain Boundary Migration During Static Recrystallization: A Cellular Automaton Study. Metallurgical and Materials Transactions A, 2022. 53: pp. 1630-1644.
48. B. Radhakrishnan, G. Sarma, and T. Zacharia, Monte Carlo simulation of deformation substructure evolution during recrystallization. Scripta Materialia, 1998. 39: pp. 1639-1645.
49. S.-H. Choi, F. Barlat, and J. Chung, Modeling of textures and yield surfaces during recrystallization in IF steel sheets. Scripta Materialia, 2001. 45: pp. 1155-1162.
50. M.S. Salehi and S. Serajzadeh, Simulation of static recrystallization in non-isothermal annealing using a coupled cellular automata and finite element model. Computational Materials Science, 2012. 53: pp. 145-152.
51. C. Zheng, N. Xiao, D. Li, and Y. Li, Mesoscopic modeling of austenite static recrystallization in a low carbon steel using a coupled simulation method. Computational Materials Science, 2009. 45: pp. 568-575.
52. A. Rollett and D. Raabe, A hybrid model for mesoscopic simulation of recrystallization. Computational Materials Science, 2001. 21: pp. 69-78.
53. N. Shen, A. Samanta, and H. Ding, Microstructure simulations for orthogonal cutting via a cellular automaton model. Procedia Cirp, 2017. 58: pp. 543-548.
54. F. Chen and Z. Cui, Mesoscale simulation of microstructure evolution during multi-stage hot forging processes. Modelling and Simulation in Materials Science and Engineering, 2012. 20, 045008: pp. 1-17.
55. W.F. Hosford and J.L. Duncan, The aluminum beverage can. Scientific American, 1994. 271: pp. 48-53.
56. D.H. Liu, C.F. Li, and H.P. Yu, Numerical modeling and deformation analysis for electromagnetically assisted deep drawing of AA5052 sheet. Transactions of Nonferrous Metals Society of China, 2009. 19: pp. 1294-1302.
57. K. Inal, P. Wu, and K. Neale, Simulation of earing in textured aluminum sheets. International Journal of Plasticity, 2000. 16: pp. 635-648.
58. W. Baldwin, T. Howald, and A. Ross, Relative triaxial deformation rates. Metals Technology, 1945. 12: pp. 1-24.
59. W. Roberts, Texture control in sheet metal. Sheet Metal Industries , 1966. 43: pp. 237-245.
60. Q. Ma, W. Mao, H. Feng, and Y. Yu, Rapid texture measurement of cold-rolled aluminum sheet by X-ray diffraction. Scripta Materialia, 2006. 54: pp. 1901-1905.
61. M. Benke, A. Hlavacs, D. Petho, D. Angel, M. Sepsi, E. Nagy, and V. Mertinger. A simple correlation between texture and earing. in IOP Conference Series: Materials Science and Engineering, 2018. 426: pp. 1-8.
62. A. Krupkowski and S. Kawinski, The Phenomenon of Anisotropy in Annealed Polycrystalline Metals. Journal of the Institute of Metals, 1949. 75: pp. 869-880.
63. W. Lankford, New criteria for predicting the press performance of deep drawing sheets. Transactions of the American Society for Metals, 1950. 42: pp. 1197-1232.
64. R. Hill, A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1948. 193: pp. 281-297.
65. F. Barlat, D.J. Lege, and J.C. Brem, A six-component yield function for anisotropic materials. International Journal of Plasticity, 1991. 7: pp. 693-712.
66. F. Barlat, S. Panchanadeeswaran, and O. Richmond, Earing in cup drawing face-centered cubic single crystals and polycrystals. Metallurgical Transactions A, 1991. 22: pp. 1525-1534.
67. F. Barlat, Y. Maeda, K. Chung, M. Yanagawa, J. Brem, Y. Hayashida, D. Lege, K. Matsui, S. Murtha, and S. Hattori, Yield function development for aluminum alloy sheets. Journal of the Mechanics and Physics of Solids, 1997. 45: pp. 1727-1763.
68. F. Barlat, H. Aretz, J.W. Yoon, M. Karabin, J. Brem, and R. Dick, Linear transfomation-based anisotropic yield functions. International Journal of Plasticity, 2005. 21: pp. 1009-1039.
69. S.-H. Zhang, M.R. Jensen, J. Danckert, K.B. Nielsen, D. Kang, and L. Lang, Analysis of the hydromechanical deep drawing of cylindrical cups. Journal of Materials Processing Technology, 2000. 103: pp. 367-373.
70. I. Salehinia and A. Shahani, Effect of sheet anisotropy on the wear in deep-drawing process of a cylindrical cup. International Journal of Mechanical Sciences, 2009. 51: pp. 856-868.
71. J.W. Yoon, F. Barlat, K. Chung, F. Pourboghrat, and D.-Y. Yang, Influence of initial back stress on the earing prediction of drawn cups for planar anisotropic aluminum sheets. Journal of Materials Processing Technology, 1998. 80: pp. 433-437.
72. J.W. Yoon, F. Barlat, K. Chung, F. Pourboghrat, and D.-Y. Yang, Earing predictions based on asymmetric nonquadratic yield function. International Journal of Plasticity, 2000. 16: pp. 1075-1104.
73. J.W. Yoon, F. Barlat, R. Dick, and M. Karabin, Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. International Journal of Plasticity, 2006. 22: pp. 174-193.
74. S. Fukui and H. Kudo, The earing in deep-drawing and directionality in tension-test of sheet metal. Report - Institue of Science and Technology, University of Tokyo, 1950. 4: p. 33.
75. P. Lequeu, Earing control and deformation processing of aluminium alloys. Texture, Stress, and Microstructure, 1991. 14: pp. 1019-1024.
76. N. Kanetake, Y. Tozawa, and T. Otani, Calculations from texture of earing in deep drawing for fcc metal sheets. International Journal of Mechanical Sciences, 1983. 25: pp. 337-345.
77. J. Hu, Z. Marciniak, and J. Duncan, Mechanics of sheet metal forming. Elsevier, Massachusetts, USA 2002.
78. D. Lin, D. Daniel, and J. Jonas, Simulation of earing in textured materials. Materials Science and Engineering: A, 1991. 131: pp. 161-170.
79. J. Hu, T. Ishikawa, and K. Ikeda, Analysis on earing behavior of textured pure aluminum and A5083 alloy sheets. Journal of Materials Processing Technology, 1998. 83: pp. 200-208.
80. S. Li, X. Zhang, H. Zhou, and G. Gottstein, Crystallographic analysis of the influence of stress state on earing behavior in deep drawing of face-centered cubic metals. Metallurgical and Materials Transactions A, 1997. 28: pp. 785-793.
81. A. Clarke, P. Van Houtte, and S. Saimoto. A Quantitative Analysis of Earing during Deep Drawing of Tin Plate Steel and Aluminum. in Materials Science Forum, 1994. 157: pp.1953-1960.
82. J. Yoon and O. Cazacu. Anisotropic yield function capable of predicting eight ears. in AIP Conference Proceedings, 2011. 1383: pp. 1-7.
83. K. Chung, D. Kim, and T. Park, Analytical derivation of earing in circular cup drawing based on simple tension properties. European Journal of Mechanics-A/Solids, 2011. 30: pp. 275-280.
84. C. Da Costa Viana, G. Davies, and J. Kallend, The prediction of earing behavior and formability limits from texture data. Textures of Materials, 1978. 2: pp. 447-453.
85. P. Rodrigues and P. Bate, Textures in non-ferrous metals and alloys. The Minerals, Metals & Materials Society, Warrendale, PA, USA 1985: p. 173.
86. P. Van Houtte, G. Cauwenberg, and E. Aernoudt, Analysis of the earing behaviour of aluminium 3004 alloys by means of a single model based on yield loci calculated from orientation distribution functions. Materials Science and Engineering, 1987. 95: pp. 115-124.
87. G. Sachs, Plasticity problems in metals. Transactions of the Faraday Society, 1928. 24: pp. 84-92.
88. M. Benke, B. Schweitzer, A. Hlavacs, and V. Mertinger, Prediction of earing of cross-rolled Al sheets from {h00} pole figures. Metals, 2020. 10: pp. 1-8.
89. J. Tallon and A. Wolfenden, Temperature dependence of the elastic constants of aluminum. Journal of Physics and Chemistry of Solids, 1979. 40: pp. 831-837.
90. A. Brown and M. Ashby, Correlations for diffusion constants. Acta Metallurgica, 1980. 28: pp. 1085-1101.
91. D. Raabe, Introduction of a scalable three-dimensional cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena. Philosophical Magazine A, 1999. 79: pp. 2339-2358.
92. P. Beck and H. Hu, ASM Seminar on Recrystallization. Grain Growth and Texture, Metal Park, Ohio, USA 1966.
93. F. Haessner and S. Hofmann, Recrystallization of Metallic Materials. ed. by F. Haessner, Dr. Rieder-Verlag Gmbh, Stuttgart, Germany 1978.
94. F. Humphreys, A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—I. The basic model. Acta Materialia, 1997. 45: pp. 4231-4240.
95. Q. Liu, D.J. Jensen, and N. Hansen, Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium. Acta Materialia, 1998. 46: pp. 5819-5838.
96. O. Ivasishin, S. Shevchenko, N. Vasiliev, and S. Semiatin, A 3-D Monte-Carlo (Potts) model for recrystallization and grain growth in polycrystalline materials. Materials Science and Engineering: A, 2006. 433: pp. 216-232.
97. X. Song and M. Rettenmayr, Modeling recrystallization in a material containing fine and coarse particles. Computational Materials Science, 2007. 40: pp. 234-245.
98. M.B. Bever, D.L. Holt, and A.L. Titchener, The stored energy of cold work. Progress in Materials Science, 1973. 17: pp. 5-177.
99. M. Winning, G. Gottstein, and L. Shvindlerman, On the mechanisms of grain boundary migration. Acta Materialia, 2002. 50: pp. 353-363.
100. Y. Huang and F. Humphreys, Measurements of grain boundary mobility during recrystallization of a single-phase aluminium alloy. Acta Materialia, 1999. 47: pp. 2259-2268.
101. L.M.R.I. Association, Standardization of a testing method on work-hardening exponent and plastic anisotropy coefficient of aluminum and aluminum alloy sheet. Journal of Japan Institute of Light Metals, 1977. 27: pp. 348-364.
102. G.I. Taylor, Plastic strain in metals. Journal of the Institute of Metals, 1938. 62: pp. 307-324.
103. P. Van Houtte, A comprehensive mathematical formulation of an extended Taylor–Bishop–Hill model featuring relaxed constraints, the Renouard–Wintenberger theory and a strain rate sensitivity model. Texture, Stress, and Microstructure, 1988. 8: pp. 313-350.
104. C.Y. Li, Master Thesis, National Cheng Kung University 2021.
105. W. Hutchinson, Recrystallisation textures in iron resulting from nucleation at grain boundaries. Acta Metallurgica, 1989. 37: pp. 1047-1056.
106. A. Jones, B. Ralph, and N. Hansen, Subgrain coalescence and the nucleation of recrystallization at grain boundaries in aluminium. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1979. 368: pp. 345-357.
107. O. Engler, On the origin of the R orientation in the recrystallization textures of aluminum alloys. Metallurgical and Materials Transactions A, 1999. 30: pp. 1517-1527.
108. H. Yamagata, Y. Ohuchida, N. Saito, and M. Otsuka, Nucleation of new grains during discontinuous dynamic recrystallization of 99.998 mass% Aluminum at 453 K. Scripta Materialia, 2001. 45: pp. 1055-1061.
109. O. Engler, H. Vatne, and E. Nes, The roles of oriented nucleation and oriented growth on recrystallization textures in commercial purity aluminium. Materials Science and Engineering: A, 1996. 205: pp. 187-198.
110. J. Hjelen, R. Ørsund, and E. Nes, On the origin of recrystallization textures in aluminium. Acta Metallurgica et Materialia, 1991. 39: pp. 1377-1404.
111. A. Ridha and W. Hutchinson, Recrystallisation mechanisms and the origin of cube texture in copper. Acta Metallurgica, 1982. 30: pp. 1929-1939.
112. S. Zaefferer, T. Baudin, and R. Penelle, A study on the formation mechanisms of the cube recrystallization texture in cold rolled Fe–36% Ni alloys. Acta Materialia, 2001. 49: pp. 1105-1122.
113. P. Bhattacharjee, R. Ray, and N. Tsuji, Cold rolling and recrystallization textures of a Ni–5 at.% W alloy. Acta Materialia, 2009. 57: pp. 2166-2179.
114. W.M. Mao and Y. Ping, Formation mechanisms of recrystallization textures in aluminum sheets based on theories of oriented nucleation and oriented growth. Transactions of Nonferrous Metals Society of China, 2014. 24: pp. 1635-1644.
115. T. Morimoto, F. Yoshida, A. Yanagida, and J. Yanagimoto. On the development of a model predicting the recrystallization texture of aluminum using the Taylor model for rolling textures and the coincidence lattice site theory. in IOP Conference Series: Materials Science and Engineering, 2015. 82: pp. 1-5.
116. I. Samajdar, B. Verlinden, L. Rabet, and P. van Houtte, Recrystallization texture in a cold rolled commercial purity aluminum: on the plausible macro-and micro-mechanisms. Materials Science and Engineering: A, 1999. 266: pp. 146-154.