簡易檢索 / 詳目顯示

研究生: 李岑晏
Lee, Tsen-Yan
論文名稱: 自動駕駛技術於交通行動服務應用下之城市空間可及性暨公平性研析
Research on Urban Spatial Accessibility and Equality under the Application of Autonomous Driving in MaaS
指導教授: 張學聖
Chang, Hsueh-Sheng
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 74
中文關鍵詞: 自動駕駛準大眾運輸土地利用細胞自動機基尼指數空間公平
外文關鍵詞: autonomous driving, paratransit, land use, Cellular Automata, Gini Index, spatial equality
相關次數: 點閱:149下載:35
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 交通運輸係以支持人類生活需求之旅行行為為目的,藉能源技術、專業化生產、資通訊科技等技術革新,逐步推進發展。其中,自動駕駛(autonomous driving)以人工智慧與資通訊科技應用,成為移動需求變化下的創新交通運輸模式。有鑑於城市系統中,土地利用為城市活動之空間反映,交通運輸為滿足多活動間移動需求之服務項目,且以可及性循環影響土地利用分布,而達動態均衡互動關係。是以自動駕駛作為交通運輸的一項重要革新,於該互動關係將產生何種影響特性,是謂本領域研究重要議題。
    自動駕駛於交通運輸之應用,存在對私人、主動、公共、共享運輸引入的彈性時空分擔方案,而於相關研究中顯示,將基於車距縮減、車速限制、取代傳統汽柴油車輛、交通基礎設施釋出等特性,改善氣候變遷、交通壅塞、土地使用效率等城市發展課題。然自動駕駛若應用於私人運輸並採跨區域性移動,將因服務範圍擴大、旅行成本降低等,對大眾運輸產生替代性效果,並降低土地利用與交通運輸系統效率。是以,相關研究指出,自動駕駛採共享、配合公共運輸之運輸模式具可行性,並且以交通公平為考量的政策框架具有必要性。然既有研究多偏重採變數指標,探討私人與共享運輸應用間旅行行為與特定土地利用之異質性,而缺乏探討自動駕駛於共享運輸之差異性應用,對宏觀空間尺度土地利用的影響效果,以及該交通政策方案的公平性評估。
    是以,本研究以2050年嘉義縣為研究範圍,研擬自動駕駛於共享運輸應用之兩政策方案:共享無縫支援既有大眾運輸之再生智能城市情境(The Regenerative City)、共享出租取代既有大眾運輸之之高移動性城市情境(The hypermobile city),並採用結合細胞自動機(Cellular Automata, CA)、馬可夫鏈(Markov Chain)與多層感知(Multilayer Perceptron, MLP)之土地利用變遷模型(Land use Change Model, LCM),進行土利用模擬,並進一步採用結合基尼指數(Gini Index)與洛倫茲曲線(Lorenz curve)之社會相關可及性影響評估法(SRAI),以基本可及性為觀點之空間公平分析,進行政策適用性評估。
    結果表明,兩情境之土地利用損益變化與轉換類型相近,然分布型態及分布區位存在異質性,分別反映高移動性城市基於聚集經濟、住宅選擇,屬長距離旅次之分散式分布特性,再生智能城市則受限於服務空間範圍,而屬於短距離旅次下,以節點為核心的轉變特性。空間公平性評估結果則表明,兩政策於使用者之於基本服務的空間公平存在明顯提升效果,且以高移動性城市為高,然若以都市規劃觀點論之,該政策因尚存在土地碎化、建城區範圍擴增、基礎設施供給效率等疑義,是以再生智能城市應在家戶之於基本服務的機會可及性屬高度公平,且各類基本服務間的公平性較高移動性為高的特性下,具有適用性,然鑑於部分基本服務間的公平性相較基年有降低的情形,是以建議應探討土地使用管制相關政策於政策實施之引導效果。

    The transportation department aims to support the travel behavior and develop through technological innovations. With the application of artificial and ICTs, autonomous driving becomes an innovative transportation mode under the changing movement demand. Considering land use reflects urban spatial activities, and transportation services the needs of movement demand among multiple activities, they achieve dynamic equilibrium with accessibility. Taking autonomous driving as an important innovation in transportation, how it impacts to the interaction is an important issue.
    The flexible time-space collaborative relationship of transportation in autonomous is comprised of private, active, public, and sharing transportation in the application of autonomous driving. According to relevant research, it can solve urban issues such as climate change, traffic congestion and land use efficiency with the reduction of vehicle distance, speed limit, replacement of traditional vehicles, and transportation infrastructure. However, it may also reduce the efficiency of land use and transportation systems with the alternative effect on public transportation. Therefore, relevant studies suggest that sharing autonomous driving and the traffic equality policy evaluation framework is necessary in autonomous driving era. However, existing studies mostly use variable indicators to analyze the travel behavior and specific land use in autonomous driving scenario, but lack of analyzing the impact on macro-spatial scale of land use and traffic equality among different proposal of sharing autonomous driving policy.
    This study takes Chiayi County in 2050 as study aera, set two kinds of autonomous vehicle policy: the Regenerative City, sharing seamless autonomous vehicle supporting the existing public transportation, and The Hypermobile City, sharing rental autonomous vehicle system replacing the existing public transportation. In order to analyze the macro-spatial scale of land use and traffic equality, this study do an empirical analysis through the use of LCM model based on the combination of CA-Markov and MLP, and SRAI method based on the combination of Gini Index and Lorenz curve.
    The result of land use simulation shows that the profit and loss changes, net changes and conversion types in the two scenarios are similar, but there is heterogeneity in the spatial distribution pattern. In addition, the result also reflects the distribution characteristics of different sharing autonomous driving policy. To the Hypermobile City, the scattered distribution of land use reflects the long-distance travel characteristic based on agglomeration economy and housing selection. To the Regenerative City, land use change with the node-centered distribution reflects the limitation of service space.
    The equality evaluation results from the viewpoint of access to opportunity show that the use of seamless transportation as a support for existing public transportation, or replacement by rental systems, both improve the access to basic services, especially in the later one. However, concerning the existent problems in later scenario such as land fragmentation, expansion of the urban area, low infrastructure supply efficiency and basic service equality, therefore, the former scenario should be applicable under the high equality of households to basic services and higher equality among various basic services.

    壹、緒論 1 一、研究動機與背景 1 二、研究目的 2 三、研究內容暨流程 3 貳、文獻回顧 6 一、自動駕駛 6 二、土地使用交通運輸模型 17 三、交通政策評估 27 參、研究設計 33 一、政策情境範疇 33 二、研究範圍 37 三、研究假設、限制暨研究架構 38 四、變數設計暨模型設定 41 肆、實證研究 51 一、土地利用變遷模型建置 51 二、自動駕駛政策情境之土地利用變遷模擬 53 三、自動駕駛政策情境之空間公平性評估 56 四、綜合討論 59 伍、結論建議 60 一、研究結論 60 二、研究建議 63 參考文獻 64

    吳文成(2002)。細胞自動機Cellular Automata。檢自:http://www.fractal-wu.com/cellular_automata/
    馮正民、林楨家 (2008)。都市及區域分析方法(第二版)。建都文化事業股份有限公司,新竹。
    張政亮、張瑞津(2006)。運用馬可夫鏈模型與細胞自動機理論模擬植生復育之研究:以九九峰地區為例。地理研究,第45期,第123-142頁。
    張曜麟(2005)。都市土地使用變遷之研究。國立成功大學都市計劃學系博士論文。
    陳建元、游繁結、羅俊雄、陳天健、李文正(2005)。細胞自動機的介紹及其在土石流災害模擬的初步應用。中華水土保持學報,36(3),293-300。doi:10.29417/JCSWC.200509_36(3).0007
    Aburas, M. M., Ho, Y. M., Ramli, M. F., & Ash’aari, Z. H. (2017). Improving the capability of an integrated CA-Markov model to simulate spatio-temporal urban growth trends using an Analytical Hierarchy Process and Frequency Ratio. International Journal of Applied Earth Observation and Geoinformation, 59, 65-78.
    Administration, N. H. T. S. (2008). National motor vehicle crash causation survey: Report to congress. National Highway Traffic Safety Administration Technical Report DOT HS, 811, 059.
    Anderson, J. M., Nidhi, K., Stanley, K. D., Sorensen, P., Samaras, C., & Oluwatola, O. A. (2014). Autonomous vehicle technology: A guide for policymakers: Rand Corporation.
    Arrow, K. J. (2012). Social choice and individual values: Yale university press.
    Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265-275.
    Association, A. P. (2018). APA Policy Principles for Autonomous Vehicles.
    Azari, M., Tayyebi, A., Helbich, M., & Reveshty, M. A. (2016). Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: application to Maragheh, Iran. GIScience & Remote Sensing, 53(2), 183-205.
    Basse, R. M., Omrani, H., Charif, O., Gerber, P., & Bódis, K. (2014). Land use changes modelling using advanced methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Applied Geography, 53, 160-171. doi:https://doi.org/10.1016/j.apgeog.2014.06.016
    Bihamta, N., Soffianian, A., Fakheran, S., & Gholamalifard, M. (2015). Using the SLEUTH urban growth model to simulate future urban expansion of the Isfahan metropolitan area, Iran. Journal of the Indian Society of Remote Sensing, 43(2), 407-414.
    Buehler, R., & Pucher, J. (2012). Cycling to work in 90 large American cities: new evidence on the role of bike paths and lanes. Transportation, 39(2), 409-432.
    Cavoli, C., Phillips, B., Cohen, T., & Jones, P. (2017). Social and behavioural questions associated with Automated Vehicles A Literature Review. UCL Transport Institute January.
    Charif, O., Omrani, H., & Maria, B. (2012). Cellular automata based on artificial neural network for simulating land use changes (Vol. 44).
    Clarke, K. C., & Gaydos, L. J. (1998). Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International journal of geographical information science, 12(7), 699-714.
    Clarke, K. C., Hoppen, S., & Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 24(2), 247-261.
    Clewlow, R. R., & Mishra, G. S. (2017). Disruptive transportation: The adoption, utilization, and impacts of ride-hailing in the United States.
    Cohen, S., Shirazi, S., & Curtis, T. (2017). Can we advance social equity with sharing, autonomous and electric vehicles? Institute of Transportation Studies at the University of California, Davis.
    Dill, J., & Carr, T. (2003). Bicycle commuting and facilities in major US cities: if you build them, commuters will use them. Transportation Research Record, 1828(1), 116-123.
    Eastman, J. R. (2015). TerrSet manual. Accessed in TerrSet version, 18, 1-390.
    Eastman, J. R. (2020). TerrSet 2020 manual. Accessed in TerrSet version, 1-389.
    Erhardt, G. D., Roy, S., Cooper, D., Sana, B., Chen, M., & Castiglione, J. (2019). Do transportation network companies decrease or increase congestion? Science Advances, 5(5), eaau2670. doi:10.1126/sciadv.aau2670
    Fagnant, D. J., & Kockelman, K. M. (2014). Transportation Research Part C: Emerging Technologies, 40(null), 1.
    Feng, Y., & Liu, Y. (2012). An optimised cellular automata model based on adaptive genetic algorithm for urban growth simulation. In Advances in spatial data handling and GIS (pp. 27-38): Springer.
    Fonstad, M. A. (2006). Cellular automata as analysis and synthesis engines at the geomorphology–ecology interface. Geomorphology, 77(3-4), 217-234.
    Frey, C., & Osborne, M. (2017). Technological forecasting and social change. The future of employment: How susceptible are jobs to computerisation, 254-280.
    Fulton, L., Mason, J., & Meroux, D. (2017). Three revolutions in urban transportation: How to achieve the full potential of vehicle electrification, automation, and sharing mobility in urban transportation systems around the world by 2050. Retrieved from
    Gardiner, S. M. (2006). Protecting future generations: intergenerational buck-passing, theoretical ineptitude and a brief for a global core precautionary principle. Handbook of Intergenerational Justice, Cheltenham (UK), Edward Elgar, 148-169.
    Gelauff, G., Ossokina, I., & Teulings, C. (2019). Spatial and welfare effects of automated driving: Will cities grow, decline or both? Transportation Research Part A: Policy and Practice, 121, 277-294. doi:https://doi.org/10.1016/j.tra.2019.01.013
    Gong, S., Shen, J., & Du, L. (2016). Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon. Transportation Research Part B: Methodological, 94, 314-334.
    González-González, E., Nogués, S., & Stead, D. (2020). Parking futures: Preparing European cities for the advent of automated vehicles. Land Use Policy, 91, 104010. doi:https://doi.org/10.1016/j.landusepol.2019.05.029
    Grant-Muller, S., Mackie, P., Nellthorp, J., & Pearman, A. (2001). Economic appraisal of European transport projects: the state-of-the-art revisited. Transport Reviews, 21(2), 237-261.
    Greenblatt, J. B., & Saxena, S. (2015). Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles. Nature Climate Change, 5(9), 860-863.
    Gruel, W., & Stanford, J. M. (2016). Assessing the long-term effects of autonomous vehicles: a speculative approach. Transportation Research Procedia, 13, 18-29.
    Guan, D., Zhao, Z., & Tan, J. (2019). Dynamic simulation of land use change based on logistic-CA-Markov and WLC-CA-Markov models: a case study in three gorges reservoir area of Chongqing, China. Environmental Science and Pollution Research, 26(20), 20669-20688.
    Hagenauer, J., & Helbich, M. (2012). Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks. International journal of geographical information science, 26(6), 963-982.
    Hamburg, J. R., Blair, L., & Albright, D. (1995). Mobility as a Right. Transportation Research Record(1499).
    Hansen, W. G. (1959). How accessibility shapes land use. Journal of the American Institute of Planners, 25(2), 73-76.
    Harper, C. D., Hendrickson, C. T., Mangones, S., & Samaras, C. (2016). Estimating potential increases in travel with autonomous vehicles for the non-driving, elderly and people with travel-restrictive medical conditions. Transportation Research Part C: Emerging Technologies, 72, 1-9.
    Hawkins, J., & Nurul Habib, K. (2019). Integrated models of land use and transportation for the autonomous vehicle revolution. Transport Reviews, 39(1), 66-83. doi:10.1080/01441647.2018.1449033
    Heinrichs, D. (2016). Autonomous Driving and Urban Land Use. In M. Maurer, J. C. Gerdes, B. Lenz, & H. Winner (Eds.), Autonomous Driving: Technical, Legal and Social Aspects (pp. 213-231). Berlin, Heidelberg: Springer Berlin Heidelberg.
    Hensher, D. A. (2018). Tackling road congestion–What might it look like in the future under a collaborative and connected mobility model? Transport Policy, 66, A1-A8.
    Hine, J., & Mitchell, F. (2001). Better for everyone? Travel experiences and transport exclusion. Urban studies, 38(2), 319-332.
    Iacono, M., Levinson, D., & El-Geneidy, A. (2008). Models of transportation and land use change: A guide to the territory. Journal of Planning Literature, 22(4), 323-340.
    international, S. (2014). Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems. SAE.
    international, S. (2016). Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. SAE.
    international, S. (2018). Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. SAE.
    international, S. (2021). Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. SAE.
    Islam, K., Rahman, M. F., & Jashimuddin, M. (2018). Modeling land use change using cellular automata and artificial neural network: the case of Chunati Wildlife Sanctuary, Bangladesh. Ecological indicators, 88, 439-453.
    Juliussen, E., & Carlson, J. (2014). Autonomous Cars–Not if, but when. IHS Automotive, Jan.
    J. Hu, P. Bhowmick, F. Arvin, A. Lanzon and B. Lennox, "Cooperative Control of Heterogeneous Connected Vehicle Platoons: An Adaptive Leader-Following Approach," in IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 977-984, April 2020, doi: 10.1109/LRA.2020.2966412.
    Kamusoko, C., Aniya, M., Adi, B., & Manjoro, M. (2009). Rural sustainability under threat in Zimbabwe–simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Applied Geography, 29(3), 435-447.
    Kang, N. Y., & Kim, Y. (2019). Potential of Urban Land Use by Autonomous Vehicles: Analyzing Land Use Potential in Seoul Capital Area of Korea. IEEE Access, 7, 101915-101927. doi:10.1109/ACCESS.2019.2929777
    Kim, K.H., Yook, D.H., Ko, Y.S., & Kim, D. (2015). An analysis of expected effects of the autonomous vehicles on transport and land use in Korea. New York University: New York, NY, USA.
    Kolarova, V., & Steck, F. (2020). Chapter 28 - Estimating impact of autonomous driving on value of travel time savings for long-distance trips using revealed and stated preference methods. In K. G. Goulias & A. W. Davis (Eds.), Mapping the Travel Behavior Genome (pp. 561-575): Elsevier.
    Kutrib, M., Vollmar, R., & Worsch, T. (1997). Introduction to the special issue on cellular automata. Parallel Computing, 23(11), 1567-1576.
    Kyriakidis, M., Happee, R., & de Winter, J. C. (2015). Public opinion on automated driving: Results of an international questionnaire among 5000 respondents. Transportation Research Part F: Traffic Psychology and Behaviour, 32, 127-140.
    Kyriakidis, M., van de Weijer, C., van Arem, B., & Happee, R. (2015). The deployment of advanced driver assistance systems in Europe. Available at SSRN 2559034.
    Landis, J., & Zhang, M. (1998). The second generation of the California urban futures model. Part 1: Model logic and theory. Environment and Planning B: Planning and Design, 25(5), 657-666.
    Lee, J., Choi, J., Yi, K., Shin, M., & Ko, B. (2014). Lane-keeping assistance control algorithm using differential braking to prevent unintended lane departures. Control Engineering Practice, 23, 1-13.
    Li, X., & Yeh, A. G.-O. (2002). Neural-network-based cellular automata for simulating multiple land use changes using GIS. International journal of geographical information science, 16(4), 323-343.
    Liang, X., Liu, X., Li, D., Zhao, H., & Chen, G. (2018). Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. International journal of geographical information science, 32(11), 2294-2316.
    Liao, J., Tang, L., Shao, G., Su, X., Chen, D., & Xu, T. (2016). Incorporation of extended neighborhood mechanisms and its impact on urban land-use cellular automata simulations. Environmental Modelling & Software, 75, 163-175.
    Litman, T. (2021). Evaluating transportation equity: Victoria Transport Policy Institute.
    Liu, X., Li, X., Shi, X., Wu, S., & Liu, T. (2008). Simulating complex urban development using kernel-based non-linear cellular automata. Ecological modelling, 211(1-2), 169-181.
    Lucas, K. (2012). Transport and social exclusion: Where are we now? Transport Policy, 20, 105-113.
    Lucas, K., van Wee, B., & Maat, K. (2016). A method to evaluate equitable accessibility: combining ethical theories and accessibility-based approaches. Transportation, 43(3), 473-490. doi:10.1007/s11116-015-9585-2
    Martens, K. (2012). Justice in transport as justice in accessibility: applying Walzer’s ‘Spheres of Justice’to the transport sector. Transportation, 39(6), 1035-1053.
    May, A. D., Shepherd, S., Pfaffenbichler, P., & Emberger, G. (2020). The potential impacts of automated cars on urban transport: An exploratory analysis. Transport Policy, 98, 127-138.
    Meen, G. (1999). Regional house prices and the ripple effect: a new interpretation. Housing Studies, 14(6), 733-753.
    Mehdi, J., Mohammad, P., Fidan, B., & Jeon, S. (2016). Cooperative Least Square Parameter Identification by Consensus within the Network of Autonomous Vehicles.
    Meyer, J., Becker, H., Bösch, P. M., & Axhausen, K. W. (2017). Autonomous vehicles: The next jump in accessibilities? Research in Transportation Economics, 62, 80-91.
    Meyer, L. H., & Roser, D. (2017). Enough for the Future. In Intergenerational justice (pp. 225-254): Routledge.
    Milakis, D., Kroesen, M., & van Wee, B. (2018). Implications of automated vehicles for accessibility and location choices: Evidence from an expert-based experiment. Journal of Transport Geography, 68, 142-148.
    Milakis, D., Van Arem, B., & Van Wee, B. (2015). The ripple effect of automated driving.
    Milakis, D., van Arem, B., & van Wee, B. (2017). Policy and society related implications of automated driving: A review of literature and directions for future research. Journal of Intelligent Transportation Systems, 21(4), 324-348. doi:10.1080/15472450.2017.1291351
    Mladenovic, M. N., & McPherson, T. (2016). Engineering social justice into traffic control for self-driving vehicles? Science and engineering ethics, 22(4), 1131-1149.
    Mohammad, M., Sahebgharani, A., & Malekipour, E. (2013). Urban growth simulation through cellular automata (CA), analytic hierarchy process (AHP) and GIS; case study of 8th and 12th municipal districts of Isfahan. Geographia Technica, 8(2), 57-70.
    Mustafa, A., Rienow, A., Saadi, I., Cools, M., & Teller, J. (2018). Comparing support vector machines with logistic regression for calibrating cellular automata land use change models. European Journal of Remote Sensing, 51(1), 391-401.
    Narayanan, S., Chaniotakis, E., & Antoniou, C. (2020). Sharing autonomous vehicle services: A comprehensive review. Transportation Research Part C: Emerging Technologies, 111, 255-293. doi:https://doi.org/10.1016/j.trc.2019.12.008
    Nieuwenhuijsen, J., de Almeida Correia, G. H., Milakis, D., van Arem, B., & van Daalen, E. (2018). Towards a quantitative method to analyze the long-term innovation diffusion of automated vehicles technology using system dynamics. Transportation Research Part C: Emerging Technologies, 86, 300-327.
    Officials. (2017). Blueprint for Autonomous Urbanism.
    Officials. (2019). Blueprint for Autonomous Urbanism: Second Edition.
    Omrani, H., Charif, O., Gerber, P., Bódis, K., & Basse, R. M. (2012). Simulation of land use changes using cellular automata and artificial neural network. Technical Report, CEPS/INSTEAD.
    Pfeiffer, A., Burgholzer, A., & Kanag, D. (2021). 5 - Coupling of the mobility and energy infrastructures as urban mobility needs evolve. In J. R. Vacca (Ed.), Solving Urban Infrastructure Problems Using Smart City Technologies (pp. 107-128): Elsevier.
    Pijanowski, B., TAYEBI, A., Delavar, M., & Yazdanpanah, M. (2009). Urban expansion simulation using geospatial information system and artificial neural networks.
    Robertson, R. D., Woods-Fry, H., Hing, M. M., & Vanlaar, W. G. (2018). Senior Drivers & Automated Vehicles: Knowledge, Attitudes & Practices: Traffic Injury Research Foundation.
    Rohrleef, M., Deutsch, V., & Ackermann, T. (2015). Scenarios for Autonomous vehicles-opportunities and risks for transport companies. Verband Deutscher Verkehrsunternehmen e V position paper.
    Rojas-Rueda, D., Nieuwenhuijsen, M., Khreis, H., & Frumkin, H. (2020). Autonomous Vehicles and Public Health. Annual Review of Public Health, 41. doi:10.1146/annurev-publhealth-040119-094035
    Rovira, E., McLaughlin, A. C., Pak, R., & High, L. (2019). Looking for Age Differences in Self-Driving Vehicles: Examining the Effects of Automation Reliability, Driving Risk, and Physical Impairment on Trust. Frontiers in Psychology, 10(800). doi:10.3389/fpsyg.2019.00800
    Sagoff, M. (2007). The economy of the earth: philosophy, law, and the environment: Cambridge University Press.
    Sen, A. K. (1992). Inequality reexamined: Oxford University Press.
    Sen, A. K. (2009). The idea of justice: Harvard University Press.
    Shladover, S. E. (1995). Review of the state of development of advanced vehicle control systems (AVCS). Vehicle System Dynamics, 24(6-7), 551-595.
    Soteropoulos, A., Berger, M., & Ciari, F. (2019). Impacts of automated vehicles on travel behaviour and land use: an international review of modelling studies. Transport Reviews, 39(1), 29-49.
    Spezzano, G., & Talia, D. (1999). Programming cellular automata algorithms on parallel computers. Future Generation Computer Systems, 16(2-3), 203-216.
    Stead, D., & Vaddadi, B. (2019). Automated vehicles and how they may affect urban form: A review of recent scenario studies. Cities, 92, 125-133. doi:https://doi.org/10.1016/j.cities.2019.03.020
    Subiyanto, S., Amarrohman, F. J., & Rahmah, A. N. (2021). Modeling changes in land use using the integration of MLP-NN, CA-Markov models and GIS for settlement development in Tembalang District. Paper presented at the IOP Conference Series: Earth and Environmental Science.
    Taylor, L. O. (2003). The hedonic method. In A primer on nonmarket valuation (pp. 331-393). Springer, Dordrecht.
    Thakur, P., Kinghorn, R., & Grace, R. (2016a). Urban form and function in the autonomous era. Paper presented at the Australasian Transport Research Forum (ATRF), 38th.
    Thakur, P., Kinghorn, R., & Grace, R. (2016b). Urban form and function in the autonomous era. Paper presented at the Australasian Transport Research Forum (ATRF), 38th, 2016, Melbourne, Victoria, Australia.
    Thomopoulos, N., Grant-Muller, S., & Tight, M. (2009). Incorporating equity considerations in transport infrastructure evaluation: Current practice and a proposed methodology. Evaluation and program planning, 32(4), 351-359.
    Tillema, T., Berveling, J., Gelauff, G., Waard, J., Harms, L., & Derriks, H. (2015). Driver at the wheel? Self-driving vehicles and the traffic and transport system of the future. KiM | Netherlands Institute for Transport Policy Analysis.
    Triplett, J. E. (1986). The economic interpretation of hedonic methods. Survey of current business, 66(1), 36-40.
    Underwood, S. (2014). Michigan connected and automated vehicle working group. In: Michigan.
    Van Wee, B. (2007). Rail infrastructure: Challenges for cost–benefit analysis and other ex ante evaluations. Transportation Planning and Technology, 30(1), 31-48.
    Van Wee, B. (2012). How suitable is CBA for the ex-ante evaluation of transport projects and policies? A discussion from the perspective of ethics. Transport Policy, 19(1), 1-7.
    Wang, H., He, S., Liu, X., Dai, L., Pan, P., Hong, S., & Zhang, W. (2013). Simulating urban expansion using a cloud-based cellular automata model: A case study of Jiangxia, Wuhan, China. Landscape and urban planning, 110, 99-112.
    Wegener, M. (2004). Overview of land use transport models. Journal of Discrete Algorithms - JDA, 5.
    Wegener, M. (2014). Land-Use Transport Interaction Models. In (pp. 741-758).
    Wegener, M., & Fuerst, F. (2004). Land-Use Transport Interaction: State of the Art. SSRN Electronic Journal. doi:10.2139/ssrn.1434678
    Wolf, C. (2009). Climate change and climate policies. Intergenerational Justice. Oxford University Press, Oxford.
    Wolfram, S. (1986). Random sequence generation by cellular automata. Advances in applied mathematics, 7(2), 123-169.
    Wong, Y. Z., Hensher, D. A., & Mulley, C. (2020). Mobility as a service (MaaS): Charting a future context. Transportation Research Part A: Policy and Practice, 131, 5-19. doi:https://doi.org/10.1016/j.tra.2019.09.030
    Worsch, T. (1997). Programming environments for cellular automata. In ACRI’96 (pp. 3-12): Springer.
    Xu, T., Gao, J., & Coco, G. (2019). Simulation of urban expansion via integrating artificial neural network with Markov chain–cellular automata. International journal of geographical information science, 33(10), 1960-1983.
    Yeh, A. G.-O., & Li, X. (2001). A constrained CA model for the simulation and planning of sustainable urban forms by using GIS. Environment and Planning B: Planning and Design, 28(5), 733-753.
    Zakharenko, R. (2016). Self-driving cars will change cities. Regional Science and Urban Economics, 61, 26-37.
    Zhang, W. (2017). The interaction between land use and transportation in the era of sharing autonomous vehicles: A simulation model. Georgia Institute of Technology,
    Zhang, W., Guhathakurta, S., & Khalil, E. B. (2018). The impact of private autonomous vehicles on vehicle ownership and unoccupied VMT generation. Transportation Research Part C: Emerging Technologies, 90, 156-165.
    Zhao, W. (2019). The Long Run Effects of Uber on Public Transit, Congestion, Sprawl, and the Environment.
    Zhuge, C., & Wang, C. (2021). Integrated modelling of autonomous electric vehicle diffusion: From review to conceptual design. Transportation research part D: transport and environment, 91, 102679.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE