簡易檢索 / 詳目顯示

研究生: 張致愷
Jang, Jr-Kai
論文名稱: 離岸基樁承受循環側向荷載行為初探
A Preliminary Study on the Behavior of Offshore Pile Under Cyclic Lateral Loads
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 163
中文關鍵詞: 圓錐貫入試驗小波轉換調變極大值法p-y曲線設計組合載重樁基礎循環載重
外文關鍵詞: CPT, WTMM, pile, p-y curve, cyclic load, design load case
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 離岸基礎形式多為單樁或套筒式基礎,載重為風波流等循環載重。本論文探討循環載重與基樁側向位移關係,論文內容主要可分為介紹及設計,其中設計所用土層資料是基於圓錐貫入試驗及室內試驗結果。
    前言部分,本文選用挪威岩土工程研究院的黏土p-y曲線,及李宇白 (2021)的砂土p-y曲線,並將兩者與API規範中p-y曲線比較其差異。
    設計部分,區分為單樁和群樁,並分別採用LPile和Group程式為基礎,分析基樁之樁身位移、彎矩值、剪應力、土壤反力等。單樁部分,採用DNV-OS-J101規範設計載重,並比較兩種情況,其一為將圓錐貫入試驗結果所求得參數與室內試驗所求得參數比較;其二為大口徑基樁修正曲線(Kirsch et al. (2014))與API循環載重曲線比較。群樁部分,採用DNV-ST-0437規範在DLC 6.1條件下設計載重,並分析群樁在該條件下的受力行為。
    研究結果顯示,WTMM土壤分層與鑽孔結果對應良好,單樁部分,採用室內試驗結果及API曲線的結果最為保守,群樁部分,以新版DNV-ST-0437計算的軸力數值偏大,影響結果甚鉅。

    The study focus on the pile lateral behavior under cyclic load. The content of paper can be divided into two parts:(1) Introduction (2) Design & Comparison

    (1) Introduction:The paper refers to NGI p-y curve for clay and Tsai p-y curve for sand. Both new cyclic p-y models are compared with API cyclic p-y curve.
    (2) Design & Comparison:By using software LPile and Group, the study analyzed the pile behavior with depth, including displacement, bending moment, shear, and soil reaction. For the monopile, the design load complied with DNV-OS-J101. There are two sets of compassion. One is the parameter comparison between CPTu data and laboratory data; the other is comparison between large diameter p-y curve and API cyclic p-y curve. For the group piles, the design load complied with DNV-ST-0437. The design load case is assigned to 6.1.

    The analyzed results show that API curve using parameters acquired in laboratory is more conservative.

    摘要 I Extended Abstract II 誌謝 XI 目錄 XII 表目錄 XVI 圖目錄 XVIII 符號表 XXIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與流程 2 1.3 研究架構 3 第二章 文獻回顧 5 2.1 受側向載重之基樁行為 5 2.1.1彈性連體法 6 2.1.2地盤反力分析法 7 2.1.3有限元素法 9 2.1.4 p-y曲線分析法 11 2.1.5 有限差分法 12 2.2 圓錐貫入試驗 15 2.2.1 儀器介紹 15 2.2.2 量測數值及基本參數 16 2.2.3 參數計算及估計方法 19 2.2.4 土壤分類圖 26 2.3 土壤行為分類指數 32 2.4 WTMM土層分類法 36 第三章 分析方法 38 3.1 砂土p-y曲線 38 3.1.1 Reese砂土 38 3.1.2 API砂土 43 3.2 黏土p-y曲線 45 3.2.1 Matlock軟弱黏土 46 3.2.2 Reese不含水之硬黏土 50 3.2.3 Reese含水之硬黏土 53 3.3 大口徑基樁修正p-y曲線 57 3.4 循環載重修正p-y曲線 59 3.4.1 NGI曲線 60 3.4.2 Tsai曲線 77 3.5 群樁修正p-y曲線 83 第四章 修正p-y曲線比較 88 4.1 NGI曲線與API曲線比較 88 4.2 Tsai曲線與API曲線比較 99 第五章 土層資料 104 5.1 場址概要 104 5.2 圓錐貫入資料 104 5.3 鑽孔資料 107 5.4 參數結果比較 107 第六章 分析結果 109 6.1 設計載重 109 6.1.1 舊版-DNV-OS-J101計算載重 109 6.1.1 新版-DNV-ST-0437計算載重 110 6.2 相關修正 112 6.3循環載重分析 114 第七章 結論與建議 129 7.1 結論 129 7.2 建議 130 參考文獻 131 附錄 A Dr公式推導 140 附錄 B 分類圖資料 131 附錄 C NGI 循環應變等值線資料 145 附錄 D N_eq計算流程 149 附錄 E NGI對套管式基樁的簡化設計法 150 附錄 F 旋轉勁度計算 152 附錄 G 軸力與束制條件對樁側位移影響 155 附錄 H p-y曲線強度對最大彎矩值影響 160

    參考文獻
    1. Achmus, M., Kuo, Y.-S., and Abdel-Rahman, K., “Behavior of monopile foundations under cyclic lateral load.” Computers Geotechnics, Vol. 36, No. 5, pp. 725-735 (2009).
    2. Ahmed, S., Agaiby, S., and Mayne, P., “Sand compressibility aspects related to CPT.” Proceedings of the 3rd International Symposium on Cone Penetration Testing (CPT’14), pp. 563-572 (2014).
    3. Andersen, K. H., “Cyclic soil parameters for offshore foundation design.” Frontiers in Offshore Geotechnics III, Vol. 5 (2015).
    4. Ashour, M., Norris, G., and Pilling, P., “Lateral loading of a pile in layered soil using the strain wedge model.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 4, pp. 303-315 (1998).
    5. Bienen, B., Dührkop, J., Grabe, J., Randolph, M. F., and White, D. J., “Response of piles with wings to monotonic and cyclic lateral loading in sand.” Journal of Geotechnical Geoenvironmental Engineering, Vol. 138, No. 3, pp. 364-375 (2012).
    6. Bolton, M., “The strength and dilatancy of sands.” Géotechnique, Vol. 36, No. 1, pp. 65-78 (1986).
    7. Bouzid, D., Bhattacharya, S., and Dash, S., “Winkler Springs (py curves) for pile design from stress-strain of soils: FE assessment of scaling coefficients using the mobilized strength design concept.” Geomechanics Engineering, Vol. 5, No. 5, pp. 379-399 (2013).
    8. Ching, J., Wang, J.-S., Juang, C. H., and Ku, C.-S., “Cone penetration test (CPT)-based stratigraphic profiling using the wavelet transform modulus maxima method.” Canadian Geotechnical Journal, Vol. 52, No. 12, pp. 1993-2007 (2015).
    9. DNV-DNV-OS-J101, Design of Offshore Wind Turbine Structures. Det Norske Veritas, Oslo, Norway (2004).
    10. DNV-DNV-RP-C212, Offshore Soil Mechanics and Geotechnical Engineering. Det Norske Veritas, Oslo, Norway (2017).
    11. DNV-DNV-ST-0437, Loads and Site Conditions for Wind Turbines. Det Norske Veritas, Oslo, Norway (2016).
    12. Faber, T., and Klose, M., “Experiences with certification of offshore wind farms.” Proceedings of the The Sixteenth International Offshore and Polar Engineering Conference, California, USA (2006).
    13. Fenton, G. A., “Random field modeling of CPT data.” Journal of Geotechnical Geoenvironmental Engineering, Vol. 125, No. 6, pp. 486-498 (1999).
    14. Garcés García, C., “Design and calculus of the foundation structure of an offshore monopile wind turbine.” Ph.D. Thesis, University of Politècnica de Catalunya (2012).
    15. Hetényi, M., “Beams on elastic foundation: theory with applications in the fields of civil and mechanical engineering.” Proceedings of the University of Michigan Press, Vol. 16 (1946).
    16. Hippe, F., Humphrey, G., and Tjok, K., “Geotechnical Investigation, Chevron Gulf of Mexico Gas Hydrates JIP.” Report 0201-5081 (2006).
    17. Hulliger. “Response of Large Diameter Offshore Wind Turbine Monopile Foundations to Extreme Event Loading Expected at US Atlantic Coast Wind Energy Areas.” M.S. Thesis, University of New Orleans (2020).
    18. Jeanjean, P., Andersen, K. H., and Kalsnes, B., “Soil parameters for design of suction caissons for Gulf of Mexico deepwater clays.” Proceedings of the Offshore Technology Conference (1998).
    19. Jefferies, and Davies. “Use of CPTU to estimate equivalent SPT N 60.” Geotechnical Testing Journal, Vol. 16, No. 4, pp. 458-468 (1993).
    20. Jefferies, M., and Been, K., Soil Liquefaction: a Critical State Approach, CRC press (2006).
    21. Ju, S.-H., Hsu, H.-H., and Hsiao, T.-Y., “Three-dimensional wind fields of tropical cyclones for wind turbine structures.” Ocean Engineering, Vol. 237 (2021).
    22. Jung, B.-C., Gardoni, P., and Biscontin, A., “Probabilistic soil identification based on cone penetration tests.” Géotechnique, Vol. 58, No. 7, pp. 591-603 (2008).
    23. Kallehave, D., Thilsted, C. L., and Liingaard, M., “Modification of the API py formulation of initial stiffness of sand.” Proceedings of the Offshore Site Investigation and Geotechnics: Integrated technologies-present and future (2012).
    24. Kirsch, F., Richter, T., and Coronel, M., “Geotechnische Aspekte bei der Gründungsbemessung von Offshore‐Windenergieanlagen auf Monopfählen mit sehr großen Durchmessern.” Stahlbau, Vol. 83, pp. 61-67 (2014).
    25. Kulhawy, F. H., and Mayne, P. W., “Manual on estimating soil properties for foundation design.” Report of the Electric Power Research Institute (1990).
    26. Kuo, Y.-S., Achmus, M., and Abdel-Rahman, K., “Minimum embedded length of cyclic horizontally loaded monopiles.” Journal of Geotechnical Geoenvironmental Engineering, Vol. 138, pp. 357-363 (2012).
    27. Lengkeek, H., De Greef, J., and Joosten, S., CPT Based Unit Weight Estimation Extended to Soft Organic Soils and Peat, CRC Press (2018).
    28. Low, H., Lunne, T., Andersen, K., Sjursen, M., Li, X., and Randolph, M., “Estimation of intact and remoulded undrained shear strengths from penetration tests in soft clays.” Géotechnique, Vol. 60, No. 11, pp. 843-859 (2010).
    29. Lunne, T., “The Fourth James K. Mitchell Lecture: The CPT in offshore soil investigations-a historic perspective.” Geomechanics Geoengineering, Vol. 7, No. 2, pp. 75-101 (2012).
    30. Lunne, T., Powell, J. J., and Robertson, P. K., Cone Penetration Testing in Geotechnical Practice, CRC Press (2002).
    31. Matasović, N., and Vucetic, M., “Generalized cyclic-degradation-pore-pressure generation model for clays.” Journal of Geotechnical Engineering, Vol. 121, No. 1, pp. 33-42 (1995).
    32. Matlock, H., “Correlation for design of laterally loaded piles in soft clay.” Proceedings of the Offshore Technology Conference (1970).
    33. Matsuishi, M., and Endo, T., “Fatigue of metals subjected to varying stress.” Japan Society of Mechanical Engineers, Vol. 68, No. 2, pp. 37-40 (1968).
    34. Mayne, P., and Peuchen, J., “CPTu bearing factor Nkt for undrained strength evaluation in clays.” Proceedings of the Fourth International Symposium on Cone Penetration Testing Conference, Delft, Neverthland (2018).
    35. Mayne, P., Peuchen, J., and Bouwmeester, D., “Soil unit weight estimated from CPTu in offshore soils.” Frontiers in Offshore Geotechnics II, Vol. 2, pp. 371-376 (2010).
    36. McClelland, B., and Focht, J., “Soil modulus for laterally loaded piles.” Journal of the Soil Mechanics and Foundations division, Vol. 82, No. 4, pp. 1-22 (1956).
    37. Mindlin, R. D., “Force at a point in the interior of a semi‐infinite solid.” physics, Vol. 7, No. 5, pp. 195-202 (1936).
    38. Murchison, J. M., and O'Neill, M. W., “Evaluation of py relationships in cohesionless soils.” Proceedings of the Analysis and Design of Pile Foundations, pp. 174-191 (1984).
    39. Poulos, H. G., “Behavior of laterally loaded piles: I-single piles.” Journal of the Soil Mechanics and Foundations Division, Vol. 97, No. 5, pp. 711-731 (1971).
    40. Poulos, H. G., and Davis, E. H., Pile Foundation Analysis and Design, Wiley New York (1980).
    41. Reese, L. C., Behaviour of Piles and Pile Groups under Lateral Load, US Department of Transportation, Federal Highway Administration, Washington, DC (1983).
    42. Reese, L. C., Cox, W. R., and Koop, F. D., “Analysis of laterally loaded piles in sand.” Proceedings of the Offshore Technology Conference, No. 2080, pp. 95-105 (1974).
    43. Reese, L. C., Cox, W. R., and Koop, F. D., “Field testing and analysis of laterally loaded piles on stiff clay.” Proceedings of the Offshore Technology Conference e, No. 2312, pp. 106-125 (1975).
    44. Reese, L. C., and Welch, R. C., “Lateral loading of deep foundations in stiff clay.” Journal of the Geotechnical Engineering Division, Vol. 101, No. 7, pp. 633-649 (1975).
    45. Robertson, P. K., CPT-Guide-6th-Edition (2016).
    46. Robertson, P. K., “Estimating in-situ state parameter and friction angle in sandy soils from CPT.” Proceedings of the 2nd International Symposium on Cone Penetration Testing, pp. 2-43 (2010a).
    47. Robertson, P. K., “Interpretation of cone penetration tests—a unified approach.” Canadian Geotechnical Journal, Vol. 46, No. 11, pp. 1337-1355 (2009).
    48. Robertson, P. K., “Interpretation of in-situ tests–some insights.” Geotechnical Geophysical Site Characterization, Vol. 4, pp. 3-24 (2012).
    49. Robertson, P. K., “Soil behaviour type from the CPT: an update.” Proceedings of the 2nd International Symposium on Cone Penetration Testing, Vol. 2, pp. 575-583 (2010b).
    50. Robertson, P. K., “Soil classification using the cone penetration test.” Canadian Geotechnical Journal, Vol. 27, No. 1, pp. 151-158 (1990).
    51. Robertson, P. K., Campanella, R. G., Gillespie, D., and Greig, J., “Use of piezometer cone data.” Proceedings of the Use of in Situ Tests in Geotechnical Engineering, pp. 1263-1280 (1986).
    52. Robertson, P. K., and Wride. “Evaluating cyclic liquefaction potential using the cone penetration test.” Canadian Geotechnical Journal, Vol. 35, No. 3, pp. 442-459 (1998).
    53. Robertson, P. K., and Cabal, K. L., “Estimating soil unit weight from CPT.” Proceedings of the 2nd International Symposium on Cone Penetration Testing, pp. 2-40 (2010).
    54. Sørensen, S., and Augustesen, A., “Small-displacement soil-structure interaction for horizontally loaded piles in sand.” Proceedings of the Nordic Geotechnical Meeting (2012).
    55. Schneider, J. A., Randolph, M. F., Mayne, P. W., and Ramsey, N. R., “Analysis of factors influencing soil classification using normalized piezocone tip resistance and pore pressure parameters.” Journal of Geotechnical Geoenvironmental Engineering, Vol. 134, No. 11, pp. 1569-1586 (2008).
    56. Seed, H. B., Martin, P. P., and Lysmer, J., The generation and Dissipation of Pore Water Pressures during Soil Liquefaction, College of Engineering, University of California (1975).
    57. Sullivan, W., Reese, L., and Fenske, C., Unified Method for Analysis of Laterally Loaded Piles in Clay, Thomas Telford Publishing (1980).
    58. Van der Tempel, J., Diepeveen, N., and Cerda Salzmann, D., Design of Support Structures for Offshore Wind Turbines, WIT Press, Southampton (2010).
    59. Van der Tempel, J., Zaaijer, M., and Subroto, H., “The effects of Scour on the design of Offshore Wind Turbines.” Proceedings of the 3rd International Conference on Marine Renewable Energy, pp. 27-35 (2004).
    60. Wang, H., Wang, L., Hong, Y., Mašín, D., Li, W., He, B., and Pan, H., “Centrifuge testing on monotonic and cyclic lateral behavior of large-diameter slender piles in sand.” Ocean Engineering, Vol. 226 (2021).
    61. Wang, Y., Huang, K., and Cao, Z., “Probabilistic identification of underground soil stratification using cone penetration tests.” Canadian Geotechnical Journal, Vol. 50, No. 7, pp. 766-776 (2013).
    62. Wichtmann, T., and Triantafyllidis, T., “An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: part I—tests with monotonic loading and stress cycles.” Acta Geotechnica, Vol. 11, No. 4, pp. 739-761 (2016).
    63. Winkler, E., Die Lehre von der Elasticitaet und Festigkei, Dominicus, Prag (1867).
    64. Xianhui, Y., Zhaoqi, W., and Zehao, C., “Comparison of Prediction Methods for Axial Strength of Grouted Connections with Shear Keys.” Applied Sciences, Vol. 10, No. 6 (2020).
    65. Zhang, G., Robertson, P., and Brachman, R. W., “Estimating liquefaction-induced ground settlements from CPT for level ground.” Canadian Geotechnical Journal, Vol. 39, No. 5, pp. 1168-1180 (2002).
    66. Zhang, Y., Andersen, K., Jeanjean, P., Mirdamadi, A., Gundersen, A., and Jostad, H., “A framework for cyclic py curves in clay and application to pile design in GoM.” Proceedings of the OSIG SUT Conference (2017).
    67. Zhang, Y., Andersen, K. H., and Jeanjean, P., “Verification of a framework for cyclic py curves in clay by hindcast of Sabine River, SOLCYP and centrifuge laterally loaded pile tests.” Applied Ocean Research, Vol. 97 (2020).
    68. 王俊翔,「根據圓錐貫入試驗資料判識土壤層面與分析工址的機率特性」,碩士論文,國立臺灣大學土木工程學研究所,台北 (2016)。
    69. 古志生、鄭伯緯、鄭楚妤,「高雄地區 CPT 土壤分類特性之研究」,碩士論文,義守大學土木與生態工程系,高雄 (2020)。
    70. 李宇白,「長期反覆加載下之砂土勁度衰減與累積應變預測模型及其於離岸風機基礎分析之應用」,碩士論文,國立中興大學土木工程學系所,台中 (2021)。
    71. 邱毓權,「平行化處理應用於離岸風機套管式支撐結構設計」,碩士論文,國立成功大學土木工程學系,台南 (2017)。
    72. 徐偉朝、龔琬茜、郭思伶、夏瑄,「離岸風機支撐結構設計之高效分析技術發展」,中興工程,第147期,第61-69頁 (2020)。
    73. 莊明仁,「基樁承受側向荷重之反應分析」,博士論文,國立成功大學土木工程所,台南 (2001)。
    74. 陳奕全,「應用集群分析於多孔圓錐貫入試驗資料重建土層」,碩士論文,國立臺灣大學土木工程學研究所,台北 (2017)。
    75. 鄭傑瑋,「考量飽和黏土勁度衰減於樁基礎受側向反覆荷載之位移分析」,碩士論文,國立中興大學土木工程學系所,台中 (2020)。
    76. 蘇曉珮,「以p-y曲線應用於離岸風機基樁承受常時靜載重之研究」,碩士論文,國立成功大學土木工程學系,台南 (2015)。

    無法下載圖示 校內:2024-08-01公開
    校外:2027-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE