簡易檢索 / 詳目顯示

研究生: 柳安澤
Liu, An-Tse
論文名稱: 單電子電晶體耦合量子點結構之電子傳輸精簡模型
A Compact Model for Charge Transport in Single-Electron Transistor coupled with Quantum Dot Structures
指導教授: 高國興
Kao, Kuo-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 61
中文關鍵詞: 量子電腦量子位元單電子電晶體
外文關鍵詞: Quantum computing, Quantum bit, Single electron transistor
相關次數: 點閱:147下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 擁有高速運算優勢,量子電腦被視為「下個世代的運算工具」,比傳統電腦更加強大,世界先進科技大廠紛紛投入研發資源,各國政府也都密切關注。 其中量子位元作為量子電腦的運算核心,使用疊加與糾纏的量子力學現象,以達到兩個狀態的線性組合,可讓量子演算法快速處理資訊。 此篇論文主要研究矽自旋量子位元的電子傳輸,並分成兩部分,第一部分是單電子電晶體的模型開發,第二部分發展兩個位元的矽自旋電子的電路模型,包含一個單電子電晶體作為讀取元件,並透過模擬實際電路去對比兩者結果來驗證此模型。

    With the advantages of high-speed computing, quantum computers are regarded as ”computing tools for the next generation” and are more powerful than traditional computers which is highly invested in RD resources by advanced technology companies, and governments are paying close attention as well. Qubits, as the computing core of quantum computers, use the quantum mechanical phenomenon of superposition and entanglement to achieve a linear combination of two quantum states, allowing quantum algorithms to quickly process information. This paper mainly studies the electron transport of silicon spin qubits and is divided into two parts. The first part is the model development of single-electron transistors, and the second part develops the circuit model of two-bit silicon spintronics, including a single-electron transistor which is used as the readout element, and the model is verified by simulating the actual circuit to compare the results of the practical experiment.

    CONTENTS 中文摘要 i Abstract ii Acknowledgements iii Contents iv List of Tables vi List of Figures vii 1 Introduction 1 1.1 Quantum computing 1 1.2 The qubit1 1.3 The Moore’s law for quantum computing 3 1.4 Types of qubits 4 2 Fundamental Physics 7 2.1 Quantum dots 7 2.1.1 Quantum confinement 7 2.1.2 Charge transport through quantum dot 8 2.2 Silicon qubit operation 16 2.2.1 Silicon qubit structure 16 2.2.2 Silicon spin control 17 2.2.3 Silicon charge sensing 19 2.2.4 Silicon spin readout 23 2.3 Double quantum dots 27 3 Modified Single Electron Transistor (SET) model 29 3.1 Tunnel junction Spectre model29 3.1.1 Impulse model 30 3.1.2 Critical voltage 31 3.1.3 Impulse function approximation and tunnel time 33 3.1.4 Simulation results based on the tunnel junction 34 3.2 Single-electron transistor Spectre model 37 3.3 Single-electron transistor electron pump 41 3.4 Bias triangle 44 4 Performance Evaluation 49 5 Conclusions 57 References 59

    [1] G Arun and Vivekanand Mishra. A review on quantum computing and commu-
    nication. In 2014 2nd International Conference on Emerging Technology Trends
    in Electronics, Communication and Networking, pages 1–5, 2014.
    [2] Kelin J. Kuhn. Moore’s law past 32nm: Future challenges in device scaling. In
    2009 13th International Workshop on Computational Electronics, pages 1–6, 2009.
    [3] Sarah Feldman. 20 years of quantum computing growth. https://www.statista.
    com/chart/17896/quantum-computing-developments/, May 2019.
    [4] Gabriel Popkin. Quest for qubits. Science, 354(6316):1090–1093, 2016.
    [5] A M Tyryshkin, J J L Morton, S C Benjamin, A Ardavan, G A D Briggs, J W
    Ager, and S A Lyon. Coherence of spin qubits in silicon. Journal of Physics:
    Condensed Matter, 18(21):S783–S794, may 2006.
    [6] Floris Arnoud Zwanenburg, Andrew S. Dzurak, Andrea Morello, Michelle Yvonne
    Simmons, Lloyd C L Hollenberg, Gerhard Klimeck, Sven M. J. Rogge, Susan N.
    Coppersmith, and Mark A. Eriksson. Silicon quantum electronics. Reviews of
    Modern Physics, 85:961–1012, 2013.
    [7] S. De Franceschi, S. Sasaki, J. M. Elzerman, W. G. van der Wiel, S. Tarucha, and
    L. P. Kouwenhoven. Electron cotunneling in a semiconductor quantum dot. Phys.
    Rev. Lett., 86:878–881, Jan 2001.
    [8] C. W. J. Beenakker. Theory of coulomb-blockade oscillations in the conductance
    of a quantum dot. Phys. Rev. B, 44:1646–1656, Jul 1991.
    [9] B. Ricco and M. Ya. Azbel. Physics of resonant tunneling. the one-dimensional
    double-barrier case. Phys. Rev. B, 29:1970–1981, Feb 1984.
    [10] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T.
    Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello, and
    A. S. Dzurak. A two-qubit logic gate in silicon - Nature. Nature, 526:410–414,
    Oct 2015.
    [11] Jarryd J. Pla, Kuan Y. Tan, Juan P. Dehollain, Wee H. Lim, John J. L. Mor-
    ton, Floris A. Zwanenburg, David N. Jamieson, Andrew S. Dzurak, and Andrea
    Morello. High-fidelity readout and control of a nuclear spin qubit in silicon -
    Nature. Nature, 496:334–338, Apr 2013.
    [12] C. B. Simmons, Madhu Thalakulam, Nakul Shaji, Levente J. Klein, Hua Qin,
    R. H. Blick, D. E. Savage, M. G. Lagally, S. N. Coppersmith, and M. A. Eriksson.
    Single-electron quantum dot in xn–SiSiGe-qe3c with integrated charge sensing.
    Appl. Phys. Lett., 91(21):213103, Nov 2007.
    [13] C. H. Yang, W. H. Lim, F. A. Zwanenburg, and A. S. Dzurak. Dynamically
    controlled charge sensing of a few-electron silicon quantum dot. AIP Adv.,
    1(4):042111, Dec 2011.
    [14] J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K.
    Vandersypen, and L. P. Kouwenhoven. Single-shot read-out of an individual elec-
    tron spin in a quantum dot - Nature. Nature, 430:431–435, Jul 2004.
    15] W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha,
    and L. P. Kouwenhoven. Electron transport through double quantum dots. Rev.
    Mod. Phys., 75:1–22, Dec 2002.
    [16] R. Van de Haar. Simulation of single-electron tunnelling circuits using SPICE.
    ResearchGate, Jan 2004.
    [17] H. R. Zeller and I. Giaever. Tunneling, Zero-Bias Anomalies, and Small Superconductors. Physical Review, 181(2), May 1969.
    [18] Wilfred Wiel, S. Franceschi, J. Elzerman, Toshimasa Fujisawa, Seigo Tarucha, and
    L. Kouwenhoven. Electron transport through double quantum dots. Reviews of
    Modern Physics, 75, 05 2002.
    [19] C. H. Yang, A. Rossi, N. S. Lai, R. Leon, W. H. Lim, and A. S. Dzurak. Charge
    state hysteresis in semiconductor quantum dots. Appl. Phys. Lett., 105(18):183505,
    Nov 2014

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE