簡易檢索 / 詳目顯示

研究生: 劉依旻
Yi-MinLiu,
論文名稱: 全光纖式快速光致螢光與拉曼量測系統
All-fiber Rapid Photoluminescence and Raman Measurement System
指導教授: 崔祥辰
Chui, Hsiang-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 66
中文關鍵詞: 拉曼光譜儀光致螢光光譜儀快速掃描成像系統石墨烯
外文關鍵詞: Raman spectroscopy, PL spectroscopy, rapid mapping system, graphene
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 拉曼光譜儀和光致螢光光譜儀在許多領域當中已經被廣泛的使用,舉凡物理、化學、材料科學、生物、半導體、太陽能、及醫藥方面。它們都已經是成熟的商業化產品並且已經擁有許多方面的應用。拉曼光譜儀和光致螢光光譜儀擁有許多特性與優點,例如:非接觸性量測、容易組裝、廣泛的量測用途、快速的面積掃描量測、以及精確的分析等等。在本系統中,為了增進儀器的量測效能並且降低組裝成本,我們導入了具有孔狀結構的反射鏡來取代傳統的半穿透半反射鏡片的架構。並且我們使用了兩種不同的量測手法更近一步的來縮短量測時間,分別是X-Y量測法以及R-θ量測法分別扮演了重要的角色。
    然而,為了驗證本儀器的量測效能,我們準備了許多不同的樣品做為量測的媒介,例如:機械剝離法製成的石墨烯、化學氣相沉積法製成的石墨烯、懸掛式及貼面式之石墨烯、氫鍵改質之石墨烯、二硫化鉬、鋁砷化鎵等材料。為了滿足某些實驗上的特殊需求,我們也使用了偏振拉曼系統來量測,並且使用勞倫茲方程,藉由Origin軟體做為我們的分析拉曼光譜及螢光光譜的工具。快速掃描載台在本研究中也扮演了相當重要的角色,藉由本載台,我們可以執行X-Y量測法以及R-θ量測法。在終極目標中,我們希望可以發展出更便宜、更方便、更快、模組化設計、自動化控制、以及電腦控制的光譜儀器。

    Raman and Photoluminescence (PL) spectroscopy are widely used in many fields, including physics, chemistry, materials science, biology, semiconductor, solar cell, and medicine. Until now, there are mature commercial products. It has many advantages, such as non-contact measurements, widely usages, rapid mapping measurements, and precise analysis. To improve the scanning efficiency of these instruments, we modify the optical design based on the design of traditional spectroscopy. Here, a hole mirror was also been imported in this system. And two kinds of measurement method, X-Y measurement and R-θ measurement method are being analyzed in this design of system.
    However, to verify performance of this spectroscopy, we prepared many kinds of sample for testing, such as CVD graphene, mechanical exfoliation graphene, supported and suspended graphene, hydrogen-terminated graphene, MoS2, and AlGaAs. For experimental requirement, polarized Raman spectroscopy has been used and Origin is our fitting tool for Raman or PL spectra by Lorentzian function. Rapid mapping stage plays an important role in this research, too. It helps to execute the X-Y measurement or R-θ measurement method. In final goal to these spectroscopy, cheaper, more convenience, faster, modularization design, and automatic control by computer are been expected.

    Abstract i 論文摘要 ii 致謝 iii Chapter 1 Introduction 1 1-1. Research Motivation 1 1-2. Literature review 2 1-3. Overview of the Thesis 3 Chapter 2 Theoretical Background 5 2-1. Introduction of Samples 5 2-1.1. Graphene 5 2-1.2. MoS2, MoSe2, WSe2 8 2-1.3. AlGaAs 10 2-2. Introduction of Spectroscopy 12 2-2.1. Introduction of Raman Spectroscopy 12 2-2.2. Introduction of PL Spectroscopy 14 Chapter 3 Experimental Processes 18 3-1. Fabrication of samples 18 3-1.1. Graphene 18 3-2. Optical setup of system 21 3-2.1. The optical setup of Raman spectroscopy 21 3-2.2. The optical setup of PL spectroscopy 25 3-3. Measurement method 29 Chapter 4 Experimental Results and Discussions 32 4-1. Raman Measurement 32 4-1.1. Raman measurement of single layer graphene and analysis 32 4-1.2. Polarized Raman measurement of single layer graphene and analysis 37 4-1.3. Raman measurement of suspend and support graphene 51 4-1.4. Raman measurement of hydrogen-terminated graphene 55 4-1.5. Raman measurement of MoS2 57 4-2. PL Measurement 57 Chapter 5 Conclusion 62 5-1. Summary 62 5-2. Future Improvements 62 Reference 64

    1. G. Breit, "The quantum theory of dispersion," Nature 114, 310-310 (1924).
    2. A. H. Compton, "A quantum theory of the scattering of x-rays by light elements," Phys Rev 21, 0483-0502 (1923).
    3. C. V. Raman and K. S. Krishnan, "The optical analogue of the Compton effect," Nature 121, 711-711 (1928).
    4. S. E. Braslavsky, "Glossary of terms used in Photochemistry 3(rd) Edition (IUPAC Recommendations 2006)," Pure Appl Chem 79, 293-465 (2007).
    5. B. Valeur and M. N. Berberan-Santos, "A Brief History of Fluorescence and Phosphorescence before the Emergence of Quantum Theory," J Chem Educ 88, 731-738 (2011).
    6. A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat Mater 6, 183-191 (2007).
    7. L. Landau, "Stability of neon and carbon with respect to alpha-particle disintegration," Phys Rev 52, 1251-1251 (1937).
    8. N. D. Mermin, "Crystalline Order in 2 Dimensions," Phys Rev 176, 250-& (1968).
    9. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science 306, 666-669 (2004).
    10. B. Partoens and F. M. Peeters, "From graphene to graphite: Electronic structure around the K point," Physical Review B 74(2006).
    11. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, "Approaching ballistic transport in suspended graphene," Nat Nanotechnol 3, 491-495 (2008).
    12. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Commun 146, 351-355 (2008).
    13. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, "Experimental observation of the quantum Hall effect and Berry's phase in graphene," Nature 438, 201-204 (2005).
    14. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman spectrum of graphene and graphene layers," Phys Rev Lett 97(2006).
    15. A. K. N. Geim, K. S., "The rise of graphene," Nat.Mater (2007).
    16. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically Thin MoS2: A New Direct-Gap Semiconductor," Physical Review Letters 105(2010).
    17. A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, "Emerging Photoluminescence in Monolayer MoS2," Nano Lett 10, 1271-1275 (2010).
    18. Z. Y. Yin, H. Li, H. Li, L. Jiang, Y. M. Shi, Y. H. Sun, G. Lu, Q. Zhang, X. D. Chen, and H. Zhang, "Single-Layer MoS2 Phototransistors," Acs Nano 6, 74-80 (2012).
    19. H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, "MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap," Nano Lett 12, 3695-3700 (2012).
    20. S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. B. Li, J. C. Grossman, and J. Q. Wu, "Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2," Nano Lett 12, 5576-5580 (2012).
    21. H. L. Zeng, G. B. Liu, J. F. Dai, Y. J. Yan, B. R. Zhu, R. C. He, L. Xie, S. J. Xu, X. H. Chen, W. Yao, and X. D. Cui, "Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides," Sci Rep-Uk 3(2013).
    22. R. A. Gordon, D. Yang, E. D. Crozier, D. T. Jiang, and R. F. Frindt, "Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension," Physical Review B 65(2002).
    23. A. R. Beal and H. P. Hughes, "Kramers-Kronig Analysis of the Reflectivity Spectra of 2h-Mos2, 2h-Mose2 and 2h-Mote2," J Phys C Solid State 12, 881-890 (1979).
    24. A. Wojcik-Jedlinska, M. Wasiak, K. Kosiel, and M. Bugajski, "Photoluminescence characterization of AlGaAs/GaAs test superlattices used for optimization of quantum cascade laser technology," Opt Appl 39, 967-974 (2009).
    25. A. D. McNaught, A. Wilkinson, and International Union of Pure and Applied Chemistry., Compendium of chemical terminology : IUPAC recommendations, 2nd ed. (Blackwell Science, Oxford England ; Malden, MA, USA, 1997), pp. vii, 450 p.
    26. M. Kira, F. Jahnke, and S. W. Koch, "Quantum theory of secondary emission in optically excited semiconductor quantum wells," Physical Review Letters 82, 3544-3547 (1999).
    27. D. A. S. Analysis F.James Holler, " Principles Of Instrumental Analysis " (2006).
    28. J. C. J. E. O'Reilly, (1975).
    29. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, 2nd ed., Wiley series in pure and applied optics (Wiley Interscience, Hoboken, N.J., 2007), pp. xix, 1175 p.
    30. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, "Mobility Measurement by Analysis of Fluorescence Photobleaching Recovery Kinetics," Biophys J 16, 1055-1069 (1976).
    31. B. L. Sprague, R. L. Pego, D. A. Stavreva, and J. G. McNally, "Analysis of binding reactions by fluorescence recovery after photobleaching," Biophys J 86, 3473-3495 (2004).
    32. M. Hofmann, "In-Situ Sample Rotation as a Tool to Understand Chemical Vapor Deposition Growth of Long Aligned Carbon Nanotubes," (2008).
    33. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science 324, 1312-1314 (2009).
    34. X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes," Nano Lett 9, 4359-4363 (2009).
    35. P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, "Making graphene visible," Applied Physics Letters 91(2007).
    36. L. B. Gao, W. C. Ren, F. Li, and H. M. Cheng, "Total color difference for rapid and accurate identification of graphene," Acs Nano 2, 1625-1633 (2008).
    37. Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, and Y. H. Wu, "Interference enhancement of Raman signal of graphene," Applied Physics Letters 92(2008).

    無法下載圖示 校內:2019-08-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE