簡易檢索 / 詳目顯示

研究生: 程彥嘉
Chen, Yen-Chia
論文名稱: CoAg底層與外場對FePt磁性層結構及磁性質之影響
The effect of CoAg underlayer and magnetic field on the structure and magnetic properties of FePt layer
指導教授: 張炎輝
Chang, Yen-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 91
中文關鍵詞: 鐵鉑薄膜鈷銀磁性質
外文關鍵詞: thin film, FePt, CoAg, magnetic properties
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文係以離子束濺鍍系統製備FePt/CoAg薄膜,藉由調變不同成分比例的CoAg底層,以及控制濺鍍FePt時其垂直膜面方向之磁場(~1.3kOe)的施加與否,探討FePt/CoAg薄膜在不同製備條件及不同溫度後續退火熱處理之後,其磁硬化機構與微結構之變化,以及對磁性質之影響。
      實驗結果顯示,CoAg粒狀薄膜底層的型態會受到成分比例與膜厚的影響,顆粒尺寸主要隨著膜厚的增加而變大,顆粒分布密度則隨著膜厚及鈷比例之提高皆呈現增加的趨勢。分析後顯示CoAg粒狀薄膜中的顆粒為富銀部分,而鈷則幾乎存在於基底。
    FePt (35nm)/CoAg (20nm)薄膜試片經過30分鐘400℃至600℃的後續真空退火處理後,其有序度明顯隨著熱處理溫度增加而提升,所表現出的矯頑磁力亦隨之提高。由於底層中鈷的成分比例增加會導致序化過程變得較為困難,因此在相同退火條件下,其有序度及矯頑磁力會隨著底層鈷比例之增加而降低。
      研究中亦發現,若在濺鍍FePt層的同時,外加一垂直膜面方向之磁場,得以有效降低試片有序化所需之退火溫度,當熱處理溫度為400℃時,FePt 35nm/Co25Ag75 20nm薄膜試片之有序度約為0.5,且矯頑磁力約可達到5kOe。相對未外加磁場之試片而言,施加垂直膜面方向之磁場的試片,總體而言均具有較高的有序度與矯頑磁力。然而退火溫度提升至600℃後,雖然有序度繼續增加,矯頑磁力卻略有下降的趨勢,其主要原因為晶粒成長造成晶界對磁壁栓固能力下降與磁翻轉機制改變所致。

      This work has focused on the FePt films deposited by IBS system. The effects of various compositions of the CoAg underlayer, magnetic field (~1.3kOe) applied as the FePt deposited, and different annealing temperature on the microstructure, magnetic properties and mechanism of magnetic hardening were examined.
      The experiment results show that the morphology of the CoAg underlayers is affected by composition and thickness. The particle size increases with increasing the thickness of the CoAg underlayer. The density of particle number will increase with both increasing the thickness and Co content. These particles in the CoAg films are Ag-riched, and Co element almost exists in the matrix.
      The FePt 35nm/CoAg 20nm films were post-annealed at 400℃ to 600℃ for 30 minutes. Higher annealing temperature promotes not only the chemical ordering but also the coercivity. Increasing the Co atomic percent in the CoAg underlayer will lower the chemical ordering of FePt films.
      Applying magnetic field when depositing the FePt layer on the CoAg underlayer will reduce the annealing temperature acquired for chemical ordering. The chemical ordering of the FePt 35nm/Co25Ag75 20nm film is 0.5 after annealed at 400℃. And the coercivity is about 5kOe. The other samples with applying magnetic field also represent higher ordering and coercivity than that of without applying magnetic field. The coercivity of the FePt (+H)/CoAg films drop off after annealed at 600℃, although the chemical ordering still increase. It results from the reducing for domain wall pinning effect of grain boundary and the change for magnetization mechanism due to grain growth.

    摘 要I AbstractII 誌 謝III 目 錄IV 表目錄VII 圖目錄VIII 第一章 緒 論1  1-1 前言1  1-2 實驗動機與目的2 第二章 相關理論5  2-1 磁性理論5   2-1-1 物質磁性來源與分類5   2-1-2 鐵磁性原理5   2-1-3 磁晶異向性6   2-1-4 磁滯曲線與磁硬化機構7  2-2 鐵鉑二元合金9   2-2-1 有序結構 9   2-2-2 無序到有序變態 9   2-2-3 鐵鉑薄膜之垂直異向性 11  2-3 濺鍍理論 12   2-3-1 濺鍍原理 12   2-3-2 濺鍍率及其影響因素 13   2-3-3 離子束濺鍍系統 13   2-3-4 離子束源產生機構 14 第三章 實驗方法 23  3-1 實驗流程 23   3-1-1 靶材製作 23   3-1-2 基板製備 23   3-1-3 薄膜濺鍍 24   3-1-4 退火熱處理 25  3-2 磁性質量測 26   3-2-1 磁滯曲線 26   3-2-2 等溫殘留磁化曲線(IRM)與直流退磁曲線(DCD) 26  3-3 其他相關性質分析 26   3-3-1 X光繞射分析(X-ray Diffraction, XRD) 26   3-3-2 原子力顯微鏡分析(AFM) 26   3-3-3 歐傑電子能譜儀(AES) 27   3-3-4 掃描式電子顯微鏡(SEM)分析與EDS成分分析 27   3-3-5 穿透式電子顯微鏡(TEM) 27 第四章 結果與討論 32  4-1 鈷銀薄膜 32   4-1-1 鈷銀成分比例對薄膜型態之影響 32   4-1-2 鈷銀膜厚對薄膜型態之影響 32   4-1-3 鈷銀粒狀薄膜之分析 32  4-2 鈷銀底層對鐵鉑層之影響 34   4-2-1 縱深成分分析 34   4-2-2 X光繞射結構分析 34   4-2-3 有序度之計算 36   4-2-4 SEM表面型態觀察 39   4-2-5 磁性質量測 39   4-2-5.1 磁滯曲線之量測與分析 39   4-2-5.2 晶粒間交互作用力之探討 41  4-3 施加外場之效應 42   4-3-1 X光繞射結構分析 43   4-3-2 有序度之計算 44   4-3-3 SEM表面型態觀察 45   4-3-4 AFM表面型態觀察 45   4-3-5 磁性質量測 46   4-3-5.1 磁滯曲線之量測與分析 46   4-3-5.2 晶粒間交互作用力之探討 47 第五章 結論 84 參考文獻 85

    [1] http://www.hitachigst.com/hdd/technolo/overview/chart02.html
    [2] P.-L. Lu and S. H. Charap, “Thermal instability at 10 Gbit/in2 magnetic recording”, IEEE Trans. Magn. 30, (1994) 4230.
    [3] David N. Lambetth, “Hard disk media, future problems and possible solutions”, Vacuum 59, (2000) 522.
    [4] S. Iwasaki and K. Takemura, “An analysis for the circular mode of magnetization in short wavelength recording”, IEEE Trans. Magn. 11, (1975) 1173.
    [5] http://www.hitachigst.com/hdd/research/recording_head/pr/index.html.
    [6] R. Wood, Y. Sonobe, Z. Jin and B. Wilson, “Perpendicular recording: the promise and the problems”, J. Magn. Magn. Mater. 235, (2001) 1.
    [7] D. Litvinov, M. H. Kryder and S. Khizroev, “Recording physics of perpendicular media: hard layers”, J. Magn. Magn. Mater. 241, (2002) 453.
    [8] B. Zhang and W. A. Soffa, “Structure and properties of rapidly-solidified iron-platinum and iron-palladium alloys”, IEEE Trans. Magn. 26, (1990) 1388.
    [9] D. Weller, A. Moser, L. Folks, M. E. Best, W. Le, M. F. Toney, M. Schweickert, J.-L. Thiele and M. F. Doerner, “High Ku materials approach to 100 Gbits/in2”, IEEE Trans. Magn. 36, (2000) 10.
    [10] 金重勳, 李景明, 張慶瑞, “磁性技術手冊”, 台灣磁性技術協會(2002), 第二章.
    [11] B. D. Cullity, “Introduction to Magnetic materials” (Addison-Wesley, 1972), Chap.7
    [12] J. D. Livingston, “A review of coercivity mechanisms”, J. Appl. Phys. 52, (1981) 2544.
    [13] G. C. Hadjipanayis and A. Kim, “Doman wall pinning versus nucleation of reversed domains in R-Fe-B magnets”, J. Appl. Phys. 63, (1988) 3310.
    [14] J. J. Becker, “Reversal mechanism in copper-modified cobalt-rare-earths”, IEEE Trans. Magn. 12, (1976) 965.
    [15] H. Baker, L. H. Bennett, J. L. Murray and T. B. Massalski, “Binary Alloy Phase Diagrams”, ASM, Materials Park, (1986) p.1096.
    [16] P. Villars and L. D. Culvert, “Pearson’s Handbook of Crystallographic Data for Intermetallic Phase”, ASM, Materials Park, (1991).
    [17] M. A. I. Nahid and T. Suzuki, “Magnetic anisotropy of Fe3Pt alloy thin films ”, Appl. Phys. Lett. 85, (2004) 4100.
    [18] P. T. L. Minh, N. P. Thuy, N. D. Van and N. T. N. Chan, “Structure and magnetic properties of thin FePt alloy films”, J. Magn. Magn. Mater. 239, (2002) 335.
    [19] K. Barmak, J. Kim, S. Shell, E. B. Svedberg and J. K. Howard, “Calorimetric studies of the A1 to L10 transformation in FePt and CoPt thin films”, Appl. Phys. Lett. 80, (2002) 4268.
    [20] B. E. Warren, “X-ray diffraction”, Dover, New York, (1990) p.206.
    [21] R. A. Ristau, K. Barmak, L. H. Lewis, K. R. Coffey and J. K. Howard, “On the relationship of high coercivity and L10 ordered phase in CoPt and FePt thin films”, J. Appl. Phys. 86, (1999) 4527.
    [22] H. Kanazawa, G. Lauhoff and T. Suzuki, “Magnetic and structure properties of (CoxFe1-x)50Pt50 alloy thin films”, J. Appl. Phys. 87, (2000) 6143.
    [23] S. Okamoto, N. Kikuchi, O. Kitakami, T. Miyazaki, Y. Shimada and K. Fukamichi, “Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films”, Phys. Rev. B 66, (2002) 024413.
    [24] R. F. C. Farrow, D. Weller, R. F. Marks, M. F. Toney, A. Cebollada and G. R. Harp, “Control of the axis of chemical ordering and magnetic anisotropy in epitaxial FePt films”, J. Appl. Phys. 79, (1996) 5967.
    [25] T. Seki, T. Shima, K. Takanashi, Y. Takanashi, E. Matsubara and K. Hono, “L10 ordering of off-stoichiometric FePt(001) thin films at reduced temperature”, Appl. Phys. Lett. 82, (2003) 2461.
    [26] Y. K. Takahashi, M. Ohnuma and K. Hono, “Low-temperature fabrication of high-coercivity L10 ordered FePt magnetic thin films by sputtering”, Jpn. J. Appl. Phys. 40, (2001) L1367.
    [27] S. R. Lee, S. Yang, Y. K. Kim and J. G. Na, “Rapid ordering of Zr-doped FePt alloy films”, Appl. Phys. Lett. 78, (2001) 4001.
    [28] S. R. Lee, S. Yang, Y. K. Kim and J. G. Na, “Microstructure evolution and phase transformation characteristics of Zr-doped FePt films”, J. Appl. Phys. 91, (2002) 6857.
    [29] T. Maeda, T. Kai, A. Kikitsu, T. Nagase and J.-I. Akiyama, “Reduction of ordering temperature of an FePt-ordered alloy by addition of Cu”, Appl. Phys. Lett. 80, (2002) 2147.
    [30] Y. K. Takahashi, M. Ohnuma and K. Hono, “Effect of Cu on the structure and magnetic properties of FePt sputtered film”, J. Magn. Magn. Mater. 246, (2002) 259.
    [31] S. Kang, J. W. Harrell and D. E. Nikles, “Reduction of the fcc to L10 ordering temperature for self-assembled FePt nanoparticles containing Ag”, Nano Lett. 2(10), (2002) 1033.
    [32] Y. N. Hsu, S. Jeong, D. E. Laughlin and D. N. Lambeth, “Effect of Ag underlayers on the microstructure and magnetic properties of epitaxial FePt thin films”, J. Appl. Phys. 89, (2001) 7068.
    [33] Y. N. Hsu, S. Jeong, D. E. Laughlin and D. N. Lambeth, “The effect of Ag underlayer and Pt intermediate layers on the microstructure and magnetic properties of epitaxial FePt thin films”, J. Magn. Magn. Mater. 260, (2003) 282.
    [34] X. H. Xu, H. S. Wu, F. Wang and X. L. Li, “The effect of Ag and Cu underlayer on the L10 ordering FePt thin films”, Appl. Sur. Sci. 233, (2004) 1.
    [35] Z. L. Zhao, J. Ding, K. Inaba, J. S. Chen and J. P. Wang, “Promation of L10 ordered phase transformation by the Ag top layer on FePt thin films”, Appl. Phys. Lett. 83, (2003) 2196.
    [36] Z. L. Zhao, J. S. Chen, J. Ding, K. Inaba and J. P. Wang, “The effect of additive Ag layers on the L10 FePt phase transformation”, J. Magn. Magn. Mater. 282, (2004) 105.
    [37] T. Shima, T. Moriguchi, S. Mitami and K. Takanashi, “Low-temperature fabrication of L10 ordered FePt alloy by alternate monatomic layer deposition”, Appl. Phys. Lett. 80, (2002) 288.
    [38] T. Shima, T. Moriguchi, S. Mitani, K. Takanashi, H. Ito and S. Ishio, “Perpendicular magnetic anisotropy and domain structure of L10-ordered FePt films fabricated by monatomic layer control”, IEEE Trans. Magn. 38, (2002) 2791.
    [39] T. Shima, T. Moriguchi, T. Seki, S. Mitani and K. Takanashi, “Fabrication of L10 ordered FePt alloy films by monatomic layer sputter deposition”, J. Appl. Phys. 93, (2003) 7238.
    [40] K. Leistner, E. Backen, B. Schüpp, M. Weisheit, L. Schultz, H. Schlörb and S. Fähler, “Phase formation, microstructure, and hard magnetic properties of electrodeposited FePt films”, J. Appl. Phys. 95, (2004) 7267.
    [41] K. Leistner, J. Thomas, H. Schlörb, M. Weisheit, L. Schultz and S. Fähler, “Highly coercive electrodeposited FePt films by postannealing in hydrogen”, Appl. Phys. Lett. 85, (2004) 3498.
    [42] C. H. Lai, Y. C. Wu and C. C. Chiang, “Effect of forming gas annealing on low-temperature ordering of FePt films”, J. Appl. Phys. 97, (2005) 10H305.
    [43] C. P. Luo, S. H. Liou, L. Gao, Y. Liu and D. J. Sellmyer, “Nanostructure FePt:B2O3 thin films with perpendicular magnetic anisotropy”, Appl. Phys. Lett. 77, (2000) 2225.
    [44] M. L. Yan, H. Zeng, N. Powers and D. J. Sellmyer, “L10 (001)-oriented FePt:B2O3 composite films for perpendicular recording”, J. Appl. Phys. 91, (2002) 8471.
    [45] Z. G. Zhang, K. Kang and T. Suzuki, “FePt (001) texture development on an Fe-Ta-C magnetic soft underlayer with SiO2/MgO as an intermediate layer”, Appl. Phys. Lett. 83, (2003) 1785.
    [46] A. Cebollada, D. Weller, J. Sticht, G. R. Harp, R. F. C. Farrow, R. F. Marks, R. Savoy and J. C. Scott, “Enhanced magneto-optical Kerr effect in spontaneously ordered FePt alloys: Quantitative agreement between theory and experiment”, Phys. Rev. B 50, (1994) 3419.
    [47] S. Mitani, K. Takanashi, M. Sano, H. Fujimori, A. Osawa and H. Nakajima, “Perpendicular magnetic anisotropy and magneto-optical Kerr rotation in FePt(001) monoatomic multilayers”, J. Magn. Magn. Mater. 148, (1995) 163.
    [48] R. F. C. Farrow, D. Weller, R. F. Marks, M. F. Toney, A. Cebollada and G. R. Harp, “Control of the axis of chemical ordering and magnetic anisotropy epitaxial FePt films”, J. Appl. Phys. 79, (1996) 5967.
    [49] R. F. C. Farrow, D. Weller, R. F. Marks, M. F. Toney, S. Hom, G. R. Harp and A. Cebollada, “Growth temperature dependence of long-range alloy order and magnetic properties of epitaxial FexPt1-x (x~0.5) films”, Appl. Phys. Lett. 69, (1996) 1166.
    [50] L. Eckertova and T. Ruzicka, “Diagnostics and application of thin films”, Institute of physics publishing (1993), Chap.1 &2.
    [51] 汪建民, “材料分析”, 中國材料科學學會 (1998), 第六章.
    [52] J. Tuaillon-Combes, O. Boisron, E. Bernstein, G. Guiraud, A. Gerber, A. Milner, P. Melinon and A. Perez, “Extraordinary Hall effect and X-ray photoemission studies of two dimensional films of magnetic nanoclusters”, Appl. Sur. Sci. 226, (2004) 321.
    [53] H. S. Nalwa, “Magnetic nanostructures”, American scientific publishers (2002), Chap.3.
    [54] Y. C. Lai, Y. H. Chang and Y. K. Chen, “The magnetic properties of Fe-Co-Pt alloys films”, Thin Solid Films 469-470, (2004) 290.
    [55] 許樹恩, 吳泰伯, “X光繞射原理與材料結構分析”, 中國材料科學學會 (1993), 第十三章.
    [56] W. Roberts, “X-ray measurements of order in CuAu”, Acta Met. 2, (1954) 597.
    [57] E. F. Kneller, “The exchange-spring magnet: a new material principle for permanent magnets”, IEEE Trans. Magn. 27, (1991) 3588.
    [58] G. W. D. Spratt, P. R. Bissell, R. W. Chantrell and E. P. Wohlfarth, “Static and dynamic experimental studies of particulate recording media”, J. Magn. Magn. Mater. 75, (1988) 309.
    [59] P. E. Kelly, K. O’Grady, P. I. Mayo and R. W. Chantrell, “Switching mechanisms in cobalt-phosphorus thin films”, IEEE Trans. Magn. 25, (1989) 3881.
    [60] P. I. Mayo, K. O’Grady, P. E. Kelly, J. Gambridge, I. L. Sanders, T. Yogi and R. W. Chantrell, “A magnetic evaluation of interaction and noise characteristics of CoNiCr thin films”, J. Appl. Phys. 69, (1991) 4733.
    [61] C. Engstrőm, T. Berlind, J. Birch, L. Hultman, I. P. Ivanov, S. R. Kirkpatrick, S. Rohde, “Design, plasma studies, and ion assisted thin film growth in an unbalanced dual target magnetron sputtering system with a solenoid coil”, Vacuum 56, (2000) 107.
    [62] B. D. Cullity, “Introduction to Magnetic materials” (Addison-Wesley, 1972), Chap 2.

    下載圖示 校內:2007-07-31公開
    校外:2007-07-31公開
    QR CODE