研究生: |
莊凱傑 Chuang, Kai-Chieh |
---|---|
論文名稱: |
氮化鎵/氮化鋁鎵蕭特基接觸場效應元件之研製 Fabrication of GaN/AlGaN Schottky Contact Field-Effect Devices |
指導教授: |
劉文超
Liu, Wen-Chau 方炎坤 Fang, Yean-Kuen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 表面處理 、氫氣感測器 、蕭特基二極體 、氮化鋁鎵/氮化鎵 、高電子移動率電晶體 |
外文關鍵詞: | surface treatment, hydrogen sensor, Schottky diode, AlGaN/GaN, high electron mobility transistor (HEMT) |
相關次數: | 點閱:79 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用有機金屬化學汽相沈積法研製以氮化鋁鎵/氮化鎵異質結構為基礎之場效應元件,包括蕭特基二極體式氫氣感測器與高電子移動率電晶體。
在氫氣感測器方面,蕭特基二極體式氫氣感測器選擇鈀作為蕭特基接觸金屬,用以檢測氫氣,並研究元件使用過氧化氫表面處理之特性。由於過氧化氫的強氧化特性,可以經由浸泡該溶液形成氧化鋁層,此氧化鋁層可以有效地增加表面之吸附面積和顯著改善氫氣偵測能力。本研究將元件曝露在不同濃度的氫氣環境下,並探討比較有無使用過氧化氫表面處理之元件對氫氣感測的靈敏度和反應時間之影響。
在高電子移動率電晶體方面,本研究將探討加入二氧化矽介電層與傳統式氮化鋁鎵/氮化鎵高電子移動率電晶體之差異。利用二氧化矽的鈍化特性,一薄二氧化矽介電層可經由射頻磁控濺鍍沉積而成,所形成的二氧化矽介電層可以降低表面能態和抑制電流崩,進而提升其電性。此外,在沉積二氧化矽介電層前,可以經由適當浸泡過氧化氫溶液以形成一薄氧化鋁層,此氧化鋁/二氧化矽堆疊結構之介電層能更進一步提升其電性。
In this thesis, AlGaN/GaN heterostructures, grown by metal organic chemical vapor deposition (MOCVD), are proposed to fabricate field-effect devices including Schottky diode type hydrogen gas sensor and high electron mobility transistor (HEMT).
For hydrogen gas sensors, the Pd metal is chosen as Schottky contacts metal to detect hydrogen gas. Also, the hydrogen peroxide (H2O2) surface treatment is used in this work. Based on the strong oxidation, property a thin AlOx layer could be formed by an appropriate immersion of H2O2 solution. The formed AlOx layer increases the effective adsorption sites and remarkably improves the related hydrogen gas detection capability. Hydrogen sensing behaviors of the studied devices are investigated by sensing response and response time under different gas concentrations.
For AlGaN/GaN HEMTs, an SiO2 dielectric layer prepared by R.F. sputtering is implemented in this study. The formed SiO2 dielectric layer could decrease the surface state and suppress the current collapse. In addition, a stack dielectric structure of AlOx/SiO2 is fabricated and studied in this work. The insertion layer of AlOx is achieved by an H2O2 wet chemical surface treatment. The stack dielectric layers could further improve device performance.
[1] S. R. Morrison, "Semiconductor gas sensors," Sensors and Actuators, vol. 2, pp. 329-341, 1982.
[2] G. J. Maclay, W. Buttner, and J. Stetter, "Microfabricated amperometric gas sensors," IEEE Transactions on Electron Devices, vol. 35, pp. 793-799, 1988.
[3] C. Christofides and A. Mandelis, "Solid‐state sensors for trace hydrogen gas detection," Journal of Applied Physics, vol. 68, pp. R1-R30, 1990.
[4] S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, "An ultrasensitive silicon pressure-based microflow sensor," IEEE Transactions on Electron Devices, vol. 39, pp. 825-835, 1992.
[5] P. Moseley, "Solid state gas sensors," Measurement Science and technology, vol. 8, p. 223, 1997.
[6] P. Tobias, A. Baranzahi, A. L. Spetz, O. Kordina, E. Janzén, and I. Lundstrom, "Fast chemical sensing with metal-insulator silicon carbide structures," IEEE Electron Device Letters, vol. 18, pp. 287-289, 1997.
[7] H.-I. Chen, Y.-I. Chou, and C.-Y. Chu, "A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating," Sensors and Actuators B: Chemical, vol. 85, pp. 10-18, 2002.
[8] D. G. Castner and B. D. Ratner, "Biomedical surface science: Foundations to frontiers," Surface Science, vol. 500, pp. 28-60, 2002.
[9] I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, "A hydrogen− sensitive MOS field− effect transistor," Applied Physics Letters, vol. 26, pp. 55-57, 1975.
[10] H.-I. Chen, C.-K. Hsiung, and Y.-I. Chou, "Characterization of Pd–GaAs Schottky diodes prepared by the electroless plating technique," Semiconductor science and technology, vol. 18, p. 620, 2003.
[11] L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones, "A new hydrogen sensor based on a Pt/GaAs Schottky diode," Journal of The Electrochemical Society, vol. 138, pp. 159-162, 1991.
[12] M. Yousuf, B. Kuliyev, B. Lalevic, and T. Poteat, "Pd InP Schottky diode hydrogen sensors," Solid-State Electronics, vol. 25, pp. 753-758, 1982.
[13] H.-J. Pan, K.-W. Lin, K.-H. Yu, C.-C. Cheng, K.-B. Thei, W.-C. Liu, et al., "Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor," Electronics Letters, vol. 38, pp. 92-94, 2002.
[14] Y.-I. Chou, C.-M. Chen, W.-C. Liu, and H.-I. Chen, "A new Pd-InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles," IEEE Electron Device Letters, vol. 26, pp. 62-65, 2005.
[15] V. Battut, J. Blanc, and C. Maleysson, "Gas sensitivity of InP epitaxial thin layers," Sensors and Actuators B: Chemical, vol. 44, pp. 503-506, 1997.
[16] H.-I. Chen and Y.-I. Chou, "Evaluation of the perfection of the Pd–InP Schottky interface from the energy viewpoint of hydrogen adsorbates," Semiconductor science and technology, vol. 19, p. 39, 2003.
[17] H.-I. Chen, Y.-I. Chou, and C.-K. Hsiung, "Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd–InP Schottky diode," Sensors and Actuators B: Chemical, vol. 92, pp. 6-16, 2003.
[18] V. Battut, J. Blanc, E. Goumet, V. Soulière, and Y. Monteil, "NO 2 sensor based on InP epitaxial thin layers," Thin solid films, vol. 348, pp. 266-272, 1999.
[19] F. Solzbacher, C. Imawan, H. Steffes, E. Obermeier, and M. Eickhoff, "A highly stable SiC based microhotplate NO 2 gas-sensor," Sensors and Actuators B: Chemical, vol. 78, pp. 216-220, 2001.
[20] A. Lloyd Spetz, L. Unéus, H. Svenningstorp, P. Tobias, L. G. Ekedahl, O. Larsson, et al., "SiC based field effect gas sensors for industrial applications," physica status solidi (a), vol. 185, pp. 15-25, 2001.
[21] S. Roy, C. Jacob, and S. Basu, "Ohmic contacts to 3C-SiC for Schottky diode gas sensors," Solid-State Electronics, vol. 47, pp. 2035-2041, 2003.
[22] F. Qiu, M. Matsumiya, W. Shin, N. Izu, and N. Murayama, "Investigation of thermoelectric hydrogen sensor based on SiGe film," Sensors and Actuators B: Chemical, vol. 94, pp. 152-160, 2003.
[23] Y. Gurbuz, W. Kang, J. Davidson, and D. Kerns, "Analyzing the mechanism of hydrogen adsorption effects on diamond based MIS hydrogen sensors," Sensors and Actuators B: Chemical, vol. 35, pp. 68-72, 1996.
[24] Y. Gurbuz, W. Kang, J. Davidson, D. Kinser, and D. Kerns, "Diamond microelectronic gas sensors," Sensors and Actuators B: Chemical, vol. 33, pp. 100-104, 1996.
[25] Y. Gurbuz, W. P. Kang, J. L. Davidson, and D. Kerns, "Current conduction mechanism and gas adsorption effects on device parameters of the Pt/SnO x/diamond gas sensor," IEEE Transactions on Electron Devices, vol. 46, pp. 914-920, 1999.
[26] J. Kim, B. Gila, G. Chung, C. Abernathy, S. Pearton, and F. Ren, "Hydrogen-sensitive GaN schottky diodes," Solid-State Electronics, vol. 47, pp. 1069-1073, 2003.
[27] B. Luther, S. Wolter, and S. Mohney, "High temperature Pt Schottky diode gas sensors on n-type GaN," Sensors and Actuators B: Chemical, vol. 56, pp. 164-168, 1999.
[28] J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, "AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals," Solid-state electronics, vol. 49, pp. 1330-1334, 2005.
[29] P. Childs, J. Greenwood, and C. Long, "Review of temperature measurement," Review of scientific instruments, vol. 71, pp. 2959-2978, 2000.
[30] O. Varghese, P. Kichambre, D. Gong, K. Ong, E. Dickey, and C. Grimes, "Gas sensing characteristics of multi-wall carbon nanotubes," Sensors and Actuators B: Chemical, vol. 81, pp. 32-41, 2001.
[31] E. Snow, F. Perkins, E. Houser, S. Badescu, and T. Reinecke, "Chemical detection with a single-walled carbon nanotube capacitor," Science, vol. 307, pp. 1942-1945, 2005.
[32] Y. Joseph, B. Guse, A. Yasuda, and T. Vossmeyer, "Chemiresistor coatings from Pt-and Au-nanoparticle/nonanedithiol films: sensitivity to gases and solvent vapors," Sensors and Actuators B: Chemical, vol. 98, pp. 188-195, 2004.
[33] K.-C. Ho and Y.-H. Tsou, "Chemiresistor-type NO gas sensor based on nickel phthalocyanine thin films," Sensors and Actuators B: Chemical, vol. 77, pp. 253-259, 2001.
[34] R. R. Reston and E. Kolesar, "Silicon-micromachined gas chromatography system used to separate and detect ammonia and nitrogen dioxide. I. Design, fabrication, and integration of the gas chromatography system," Journal of microelectromechanical systems, vol. 3, pp. 134-146, 1994.
[35] V. V. Sysoev, B. K. Button, K. Wepsiec, S. Dmitriev, and A. Kolmakov, "Toward the nanoscopic “electronic nose”: Hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano-and mesowire sensors," Nano letters, vol. 6, pp. 1584-1588, 2006.
[36] J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy, "A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor," Smart Materials and Structures, vol. 13, p. 1045, 2004.
[37] N. Barsan, D. Koziej, and U. Weimar, "Metal oxide-based gas sensor research: How to?," Sensors and Actuators B: Chemical, vol. 121, pp. 18-35, 2007.
[38] G. Korotcenkov, "The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors," Materials Science and Engineering: R: Reports, vol. 61, pp. 1-39, 2008.
[39] S. Semancik, R. Cavicchi, M. Wheeler, J. Tiffany, G. Poirier, R. Walton, et al., "Microhotplate platforms for chemical sensor research," Sensors and Actuators B: Chemical, vol. 77, pp. 579-591, 2001.
[40] G. Korotcenkov, "Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches," Sensors and Actuators B: Chemical, vol. 107, pp. 209-232, 2005.
[41] U. Lange, N. V. Roznyatovskaya, and V. M. Mirsky, "Conducting polymers in chemical sensors and arrays," Analytica chimica acta, vol. 614, pp. 1-26, 2008.
[42] J. Stetter and K. Blurton, "Selective Oxidation of Hydrogen in Carbon Monoxide/Air Streams. Application to Environmental Monitoring," Industrial & Engineering Chemistry Product Research and Development, vol. 16, pp. 22-25, 1977.
[43] J. Stetter and K. Blurton, "Portable high‐temperature catalytic reactor: Application to air pollution monitoring instrumentation," Review of Scientific Instruments, vol. 47, pp. 691-694, 1976.
[44] M. Holzinger, J. Maier, and W. Sitte, "Fast CO 2-selective potentiometric sensor with open reference electrode," Solid State Ionics, vol. 86, pp. 1055-1062, 1996.
[45] J. Růz̆ic̆ka and E. Hansen, "A new potentiometric gas sensor-the air-gap electrode," Analytica Chimica Acta, vol. 69, pp. 129-141, 1974.
[46] N. Miura, G. Lu, and N. Yamazoe, "High-temperature potentiometric/amperometric NO x sensors combining stabilized zirconia with mixed-metal oxide electrode," Sensors and Actuators B: Chemical, vol. 52, pp. 169-178, 1998.
[47] A. Azad, S. Akbar, S. Mhaisalkar, L. Birkefeld, and K. Goto, "Solid‐state gas sensors: A review," Journal of the Electrochemical Society, vol. 139, pp. 3690-3704, 1992.
[48] T. Maruyama, S. Sasaki, and Y. Saito, "Potentiometric gas sensor for carbon dioxide using solid electrolytes," Solid State Ionics, vol. 23, pp. 107-112, 1987.
[49] M. Holzinger, J. Maier, and W. Sitte, "Potentiometric detection of complex gases: application to CO 2," Solid State Ionics, vol. 94, pp. 217-225, 1997.
[50] N. Yamazoe and N. Miura, "Potentiometric gas sensors for oxidic gases," Journal of electroceramics, vol. 2, pp. 243-255, 1998.
[51] K. Matsuo, N. Negoro, J. Kotani, T. Hashizume, and H. Hasegawa, "Pt Schottky diode gas sensors formed on GaN and AlGaN/GaN heterostructure," Applied surface science, vol. 244, pp. 273-276, 2005.
[52] J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, "Pt-AlGaN/GaN Schottky diodes operated at 800 C for hydrogen sensing," Applied Physics Letters, vol. 87, p. 3501, 2005.
[53] C.-W. Hung, T.-H. Tsai, H.-I. Chen, Y.-Y. Tsai, T.-P. Chen, and W.-C. Liu, "Further investigation of a hydrogen-sensing Pd/GaAs heterostructure field-effect transistor (HFET)," Sensors and Actuators B: Chemical, vol. 132, pp. 587-592, 2008.
[54] C.-C. Huang, H.-I. Chen, I.-P. Liu, C.-C. Chen, P.-C. Chou, J.-K. Liou, et al., "Comprehensive study of hydrogen sensing phenomena of an electroless plating (EP)-based Pd/AlGaN/GaN heterostructure field-effect transistor (HFET)," Sensors and Actuators B: Chemical, vol. 190, pp. 913-921, 2014.
[55] D. Jewett and A. Makrides, "Diffusion of hydrogen through palladium and palladium-silver alloys," Transactions of the Faraday Society, vol. 61, pp. 932-939, 1965.
[56] G. Alefeld and J. Völkl, "Hydrogen in metals I-basic properties," in Berlin and New York, Springer-Verlag (Topics in Applied Physics. Volume 28), 1978. 442 p.(For individual items see A79-16057 to A79-16061), 1978.
[57] F. Rahimi, "Effective factors on Pd growth on porous silicon by electroless-plating: response to hydrogen," Sensors and Actuators B: Chemical, vol. 115, pp. 164-169, 2006.
[58] S.-W. Tan, H.-R. Chen, W.-T. Chen, M.-K. Hsu, A.-H. Lin, and W.-S. Lour, "Characterization and modeling of three-terminal heterojunction phototransistors using an InGaP layer for passivation," IEEE Transactions on electron devices, vol. 52, pp. 204-210, 2005.
[59] K.-H. Su, W.-C. Hsu, C.-S. Lee, T.-Y. Wu, Y.-H. Wu, L. Chang, et al., "A Novel Dilute Antimony Channel In 0.2 Ga 0.8 AsSb/GaAs HEMT," IEEE electron device letters, vol. 28, pp. 96-99, 2007.
[60] M. Faqir, G. Verzellesi, A. Chini, F. Fantini, F. Danesin, G. Meneghesso, et al., "Mechanisms of RF current collapse in AlGaN–GaN high electron mobility transistors," IEEE Transactions on Device and Materials Reliability, vol. 8, pp. 240-247, 2008.
[61] Y.-S. Lin and Y.-L. Hsieh, "Effect of Temperature on Novel InAlGaP∕ GaAs∕ InGaAs Camel-Gate Pseudomorphic High-Electron-Mobility Transistors," Journal of The Electrochemical Society, vol. 153, pp. G498-G501, 2006.
[62] H. Chen, M. Hsu, S. Chiu, W. Chen, G. Chen, Y. Chang, et al., "InGaP/InGaAs pseudomorphic heterodoped-channel FETs with a field plate and a reduced gate length by splitting gate metal," IEEE electron device letters, vol. 27, pp. 948-950, 2006.
[63] H.-M. Chuang, S.-Y. Cheng, C.-Y. Chen, X.-D. Liao, R.-C. Liu, and W.-C. Liu, "Investigation of a new InGaP-InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET)," IEEE Transactions on Electron Devices, vol. 50, pp. 1717-1723, 2003.
[64] W.-C. Liu, K.-H. Yu, R.-C. Liu, K.-W. Lin, K.-P. Lin, C.-H. Yen, et al., "Investigation of temperature-dependent characteristics of an n/sup+/-InGaAs/n-GaAs composite doped channel HFET," IEEE Transactions on Electron Devices, vol. 48, pp. 2677-2683, 2001.
[65] N. Pan, J. Elliott, M. Knowles, D. Vu, K. Kishimoto, J. Twynam, et al., "High reliability InGaP/GaAs HBT," IEEE Electron Device Letters, vol. 19, pp. 115-117, 1998.
[66] P. Chang, A. Baca, N. Li, P. Sharps, H. Hou, J. Laroche, et al., "InGaAsN/AlGaAs P-n-p heterojunction bipolar transistor," Applied Physics Letters, vol. 76, p. 2788, 2000.
[67] P. Asbeck, D. Miller, W. Petersen, and C. Kirkpatrick, "GaAs/GaAlAs heterojunction bipolar transistors with cutoff frequencies above 10 GHz," IEEE Electron Device Letters, vol. 3, pp. 366-368, 1982.
[68] W.-S. Lour, J.-H. Tsai, L.-W. Laih, and W.-C. Liu, "Influence of channel doping-profile on camel-gate field effect transistors," IEEE Transactions on Electron Devices, vol. 43, pp. 871-876, 1996.
[69] P.-H. Lai, C.-W. Chen, C.-I. Kao, S.-I. Fu, Y.-Y. Tsai, C.-W. Hung, et al., "Influences of sulfur passivation on temperature-dependent characteristics of an AlGaAs/InGaAs/GaAs PHEMT," IEEE Transactions on Electron Devices, vol. 53, pp. 1-8, 2006.
[70] R. Khatri and K. Radhakrishnan, "Study of highly selective, wet gate recess process for Al0. 25Ga0. 75As/GaAs based pseudomorphic high electron mobility transistors," Journal of Vacuum Science & Technology B, vol. 22, pp. 1653-1657, 2004.
[71] P. Fay, K. Stevens, J. Elliot, and N. Pan, "Gate length scaling in high performance InGaP/InGaAs/GaAs pHEMTs," IEEE Electron Device Letters, vol. 21, pp. 141-143, 2000.
[72] C.-C. Huang, T.-Y. Chen, C.-S. Hsu, C.-C. Chen, C.-I. Kao, and W.-C. Liu, "Comprehensive Temperature-Dependent Studies of Metamorphic High Electron Mobility Transistors With Double and Single-Doped Structures," IEEE Transactions on Electron Devices, vol. 58, pp. 4276-4282, 2011.
[73] M. Zaknoune, M. Ardouin, Y. Cordier, S. Bollaert, B. Bonte, and D. Théron, "60-GHz high power performance In/sub 0.35/Al/sub 0.65/As-In/sub 0-35/Ga/sub 0.65/As metamorphic HEMTs on GaAs," IEEE Electron Device Letters, vol. 24, pp. 724-726, 2003.
[74] Y.-J. Li, W.-C. Hsu, I.-L. Chen, C.-S. Lee, Y.-J. Chen, and K. Lo, "Improved characteristics of metamorphic InAlAs/InGaAs high electron mobility transistor with symmetric graded InxGa1-xAs channel," Journal of Vacuum Science & Technology B, vol. 22, pp. 2429-2433, 2004.
[75] C.-C. Huang, H.-I. Chen, T.-Y. Chen, C.-S. Hsu, C.-C. Chen, P.-C. Chou, et al., "On an electroless plating (EP)-based Pd/AlGaN/GaN heterostructure field-effect transistor (HFET)-type hydrogen gas sensor," IEEE Electron Device Letters, vol. 33, pp. 788-790, 2012.
[76] T.-Y. Chen, H.-I. Chen, C.-S. Hsu, C.-C. Huang, C.-F. Chang, P.-C. Chou, et al., "On an ammonia gas sensor based on a Pt/AlGaN heterostructure field-effect transistor," IEEE electron device letters, vol. 33, pp. 612-614, 2012.
[77] Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, "High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment," IEEE Electron Device Letters, vol. 26, pp. 435-437, 2005.
[78] Y.-Y. Tsai, K.-W. Lin, C.-T. Lu, H.-I. Chen, H.-M. Chuang, C.-Y. Chen, et al., "Investigation of hydrogen-sensing properties of Pd/AlGaAs-based Schottky diodes," IEEE Transactions on Electron Devices, vol. 50, pp. 2532-2539, 2003.
[79] C.-T. Lu, K.-W. Lin, H.-I. Chen, H.-M. Chuang, C.-Y. Chen, and W.-C. Liu, "A new Pd-oxide-Al/sub 0.3/Ga/sub 0.7/As MOS hydrogen sensor," IEEE Electron Device Letters, vol. 24, pp. 390-392, 2003.
[80] W. Kang and Y. Gürbüz, "Comparison and analysis of Pd‐and Pt‐GaAs Schottky diodes for hydrogen detection," Journal of applied physics, vol. 75, pp. 8175-8181, 1994.
[81] Y. Fang, S. Hwang, C. Lin, and C. Lee, "Trench Pd/Si metal‐oxide‐semiconductor Schottky barrier diode for a high sensitivity hydrogen gas sensor," Applied physics letters, vol. 57, pp. 2686-2688, 1990.
[82] K.-W. Lin, H.-I. Chen, H.-M. Chuang, C.-Y. Chen, C.-T. Lu, C.-C. Cheng, et al., "Characteristics of Pd/InGaP Schottky diodes hydrogen sensors," IEEE Sensors Journal, vol. 4, pp. 72-79, 2004.
[83] K.-W. Lin, H.-I. Chen, C.-T. Lu, Y.-Y. Tsai, H.-M. Chuang, C.-Y. Chen, et al., "A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor," Semiconductor science and technology, vol. 18, p. 615, 2003.
[84] H. Wingbrant, I. Lundström, and A. L. Spetz, "The speed of response of MISiCFET devices," Sensors and Actuators B: Chemical, vol. 93, pp. 286-294, 2003.
[85] A. E. Åbom, R. T. Haasch, N. Hellgren, N. Finnegan, L. Hultman, and M. Eriksson, "Characterization of the metal–insulator interface of field-effect chemical sensors," Journal of applied physics, vol. 93, pp. 9760-9768, 2003.
[86] D. Briand, H. Sundgren, B. van der Schoot, I. Lundstrom, and N. F. de Rooij, "Thermally isolated MOSFET for gas sensing application," IEEE Electron Device Letters, vol. 22, pp. 11-13, 2001.
[87] M. Löfdahl, M. Eriksson, M. Johansson, and I. Lundström, "Difference in hydrogen sensitivity between Pt and Pd field-effect devices," Journal of applied physics, vol. 91, pp. 4275-4280, 2002.
[88] J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, "Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen‐sensitive field‐effect devices: Observation of large hydrogen‐induced dipoles at the Pd‐SiO2 interface," Journal of Applied Physics, vol. 78, pp. 988-996, 1995.
[89] E. Maciak and Z. Opilski, "Transition metal oxides covered Pd film for optical H 2 gas detection," Thin Solid Films, vol. 515, pp. 8351-8355, 2007.
[90] S. M. Vieira, P. Beecher, I. Haneef, F. Udrea, W. I. Milne, M. A. Namboothiry, et al., "Use of nanocomposites to increase electrical" gain" in chemical sensors," Applied Physics Letters, vol. 91, pp. 203111-203111, 2007.
[91] O. Weidemann, M. Hermann, G. Steinhoff, H. Wingbrant, A. L. Spetz, M. Stutzmann, et al., "Influence of surface oxides on hydrogen-sensitive Pd: GaN Schottky diodes," Applied physics letters, vol. 83, pp. 773-775, 2003.
[92] A. Arbab, A. Spetz, and I. Lundström, "Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) devices," Sensors and Actuators B: Chemical, vol. 15, pp. 19-23, 1993.
[93] A. Trinchi, K. Galatsis, W. Wlodarski, and Y. Li, "A Pt/Ga 2 O 3-ZnO/SiC Schottky diode-based hydrocarbon gas sensor," IEEE sensors journal, vol. 3, pp. 548-553, 2003.
[94] C. Kim, J. Lee, S. Choi, I. Noh, H. Kim, N. Cho, et al., "Pd-and Pt-SiC Schottky diodes for detection of H 2 and CH 4 at high temperature," Sensors and Actuators B: Chemical, vol. 77, pp. 455-462, 2001.
[95] A. L. Spetz, P. Tobias, L. Unéus, H. Svenningstorp, L.-G. Ekedahl, and I. Lundström, "High temperature catalytic metal field effect transistors for industrial applications," Sensors and Actuators B: Chemical, vol. 70, pp. 67-76, 2000.
[96] C. Kim, J. Lee, Y. Lee, N. Cho, D. Kim, and W. Kang, "Hydrogen sensing characteristics of Pd-SiC Schottky diode operating at high temperature," Journal of electronic materials, vol. 28, pp. 202-205, 1999.
[97] A. Baranzahi, A. L. Spetz, B. Andersson, and I. Lundström, "Gas sensitive field effect devices for high temperature," Sensors and Actuators B: Chemical, vol. 26, pp. 165-169, 1995.
[98] J.-R. Huang, W.-C. Hsu, Y.-J. Chen, T.-B. Wang, K.-W. Lin, H.-I. Chen, et al., "Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al 0.3 Ga 0.7 as Schottky diodes," Sensors and Actuators B: Chemical, vol. 117, pp. 151-158, 2006.
[99] A. Rizzi, M. Kocan, J. Malindretos, A. Schildknecht, N. Teofilov, K. Thonke, et al., "Surface and interface electronic properties of AlGaN (0001) epitaxial layers," Applied Physics A, vol. 87, pp. 505-509, 2007.
[100] K. Remashan, W.-P. Huang, and J.-I. Chyi, "Simulation and fabrication of high voltage AlGaN/GaN based Schottky diodes with field plate edge termination," Microelectronic Engineering, vol. 84, pp. 2907-2915, 2007.
[101] H. Hasegawa and M. Akazawa, "Hydrogen sensing characteristics and mechanism of Pd/AlGaN/GaN Schottky diodes subjected to oxygen gettering," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 25, pp. 1495-1503, 2007.
[102] H.-Y. Liu, B.-Y. Chou, W.-C. Hsu, C.-S. Lee, and C.-S. Ho, "Novel oxide-passivated AlGaN/GaN HEMT by using hydrogen peroxide treatment," IEEE Transactions on Electron Devices, vol. 58, pp. 4430-4433, 2011.
[103] H.-Y. Liu, B.-Y. Chou, W.-C. Hsu, C.-S. Lee, and C.-S. Ho, "A simple gate-dielectric fabrication process for AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors," IEEE Electron Device Letters, vol. 33, pp. 997-999, 2012.
[104] H.-Y. Liu, B.-Y. Chou, W.-C. Hsu, C.-S. Lee, J.-K. Sheu, and C.-S. Ho, "Enhanced AlGaN/GaN MOS-HEMT performance by using hydrogen peroxide oxidation technique," IEEE Transactions on Electron Devices, vol. 60, pp. 213-220, 2013.
[105] H.-Y. Liu, B.-Y. Chou, W.-C. Hsu, C.-S. Lee, and C.-S. Ho, "Temperature-dependent investigation of AlGaN/GaN oxide-passivated HEMT by using hydrogen peroxide oxidation method," ECS Journal of Solid State Science and Technology, vol. 1, pp. Q86-Q90, 2012.
[106] H.-Y. Liu, W.-C. Hsu, C.-S. Lee, B.-Y. Chou, Y.-B. Liao, and M.-H. Chiang, "Investigation of temperature-dependent characteristics of AlGaN/GaN MOS-HEMT by using hydrogen peroxide oxidation technique," IEEE Transactions on Electron Devices, vol. 61, pp. 2760-2766, 2014.
[107] E. L. Murphy and R. Good Jr, "Thermionic emission, field emission, and the transition region," Physical review, vol. 102, p. 1464, 1956.
[108] J. Schalwig, G. Müller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, et al., "Hydrogen response mechanism of Pt–GaN Schottky diodes," Applied physics letters, vol. 80, pp. 1222-1224, 2002.
[109] J.-R. Huang, W.-C. Hsu, Y.-J. Chen, T.-B. Wang, H.-I. Chen, and W.-C. Liu, "Investigation of hydrogen-sensing characteristics of a Pd/GaN Schottky diode," IEEE Sensors Journal, vol. 11, pp. 1194-1200, 2011.
[110] M. Ali, V. Cimalla, V. Lebedev, V. Tilak, P. M. Sandvik, D. W. Merfeld, et al., "A Study of Hydrogen Sensing Performance of Pt&# 8211; GaN Schottky Diodes," IEEE Sensors Journal, vol. 6, pp. 1115-1119, 2006.
[111] T.-H. Tsai, J.-R. Huang, K.-W. Lin, W.-C. Hsu, H.-I. Chen, and W.-C. Liu, "Improved hydrogen sensing characteristics of a Pt/SiO 2/GaN Schottky diode," Sensors and Actuators B: Chemical, vol. 129, pp. 292-302, 2008.
[112] C.-W. Hung, H.-L. Lin, Y.-Y. Tsai, P.-H. Lai, S.-I. Fu, H.-I. Chen, et al., "New field-effect resistive Pd/oxide/AlGaAs hydrogen sensor based on pseudomorphic high electron mobility transistor," Japanese journal of applied physics, vol. 45, p. L780, 2006.
[113] S.-Y. Chiu, H.-W. Huang, T.-H. Huang, K.-C. Liang, K.-P. Liu, J.-H. Tsai, et al., "Comprehensive study of Pd/GaN metal–semiconductor–metal hydrogen sensors with symmetrically bi-directional sensing performance," Sensors and Actuators B: Chemical, vol. 138, pp. 422-427, 2009.
[114] H. Yu, X. Feng, D. Grozea, Z. Lu, R. Sodhi, A. Hor, et al., "Surface electronic structure of plasma-treated indium tin oxides," Applied Physics Letters, vol. 78, pp. 2595-2597, 2001.
[115] L.-G. Petersson, H. Dannetun, and I. Lundström, "Water production on palladium in hydrogen-oxygen atmospheres," Surface science, vol. 163, pp. 273-284, 1985.
[116] L.-G. Petersson, H. Dannetun, and I. Lundström, "The water-forming reaction on palladium," Surface science, vol. 161, pp. 77-100, 1985.
[117] P.-C. Chou, H.-I. Chen, I.-P. Liu, C.-W. Hung, C.-C. Chen, J.-K. Liou, et al., "Study of an electroless plating (EP)-based Pt/AlGaN/GaN Schottky diode-type ammonia sensor," Sensors and Actuators B: Chemical, vol. 203, pp. 258-262, 2014.
[118] Y. Shimizu, N. Kuwano, T. Hyodo, and M. Egashira, "High H 2 sensing performance of anodically oxidized TiO 2 film contacted with Pd," Sensors and Actuators B: Chemical, vol. 83, pp. 195-201, 2002.
[119] H. Miyazaki, T. Hyodo, Y. Shimizu, and M. Egashira, "Hydrogen-sensing properties of anodically oxidized TiO 2 film sensors: Effects of preparation and pretreatment conditions," Sensors and Actuators B: Chemical, vol. 108, pp. 467-472, 2005.
[120] C.-C. Chen, H.-I. Chen, I.-P. Liu, H.-Y. Liu, P.-C. Chou, J.-K. Liou, et al., "Enhancement of hydrogen sensing performance of a GaN-based Schottky diode with a hydrogen peroxide surface treatment," Sensors and Actuators B: Chemical, vol. 211, pp. 303-309, 2015.
[121] T.-H. Tsai, H.-I. Chen, I.-P. Liu, C.-W. Hung, T.-P. Chen, L.-Y. Chen, et al., "Investigation on a Pd–AlGaN/GaN Schottky diode-type hydrogen sensor with ultrahigh sensing responses," IEEE Transactions on Electron Devices, vol. 55, pp. 3575-3581, 2008.
[122] T.-H. Tsai, H.-I. Chen, K.-W. Lin, Y.-W. Kuo, C.-F. Chang, C.-W. Hung, et al., "SiO 2 passivation effect on the hydrogen adsorption performance of a Pd/AlGaN-based Schottky diode," Sensors and Actuators B: Chemical, vol. 136, pp. 338-343, 2009.
[123] G. Chen, A. H. W. Choi, P. T. Lai, and W. M. Tang, "Schottky-diode hydrogen sensor based on InGaN/GaN multiple quantum wells," Journal of Vacuum Science & Technology B, vol. 32, p. 011212, 2014.
[124] F. Yam and Z. Hassan, "Schottky diode based on porous GaN for hydrogen gas sensing application," Applied Surface Science, vol. 253, pp. 9525-9528, 2007.
[125] S.-Y. Chiu, J.-H. Tsai, H.-W. Huang, K.-C. Liang, T.-H. Huang, K.-P. Liu, et al., "Hydrogen sensors with double dipole layers using a Pd-mixture-Pd triple-layer sensing structure," Sensors and Actuators B: Chemical, vol. 141, pp. 532-537, 2009.
[126] T. Anderson, H. Wang, B. Kang, F. Ren, S. Pearton, A. Osinsky, et al., "Effect of bias voltage polarity on hydrogen sensing with AlGaN/GaN Schottky diodes," Applied Surface Science, vol. 255, pp. 2524-2526, 2008.
[127] W. Xin-Hua, W. Xiao-Liang, F. Chun, X. Hong-Ling, Y. Cui-Bai, W. Jun-Xi, et al., "Hydrogen Sensors Based on AlGaN/AlN/GaN Schottky Diodes," Chinese Physics Letters, vol. 25, p. 266, 2008.
[128] H.-Y. Ryu, K.-H. Ha, J.-H. Chae, O.-H. Nam, and Y.-J. Park, "Measurement of junction temperature in GaN-based laser diodes using voltage-temperature characteristics," Applied Physics Letters, vol. 87, p. 093506, 2005.
[129] J.-K. Liou, Y.-J. Liu, C.-C. Chen, P.-C. Chou, W.-C. Hsu, and W.-C. Liu, "On a GaN-based light-emitting diode with an aluminum metal mirror deposited on naturally-textured V-shaped pits grown on the p-GaN surface," IEEE Electron Device Letters, vol. 33, pp. 227-229, 2012.
[130] Y.-J. Liu, D.-F. Guo, L.-Y. Chen, T.-H. Tsai, C.-C. Huang, T.-Y. Chen, et al., "Investigation of the electrostatic discharge performance of GaN-Based light-emitting diodes with naturally textured p-GaN contact layers grown on miscut sapphire substrates," IEEE Transactions on Electron Devices, vol. 57, pp. 2155-2162, 2010.
[131] Y.-J. Liu, C.-H. Yen, L.-Y. Chen, T.-H. Tsai, T.-Y. Tsai, and W.-C. Liu, "On a GaN-based light-emitting diode with a p-GaN/i-InGaN superlattice structure," IEEE Electron Device Letters, vol. 30, pp. 1149-1151, 2009.
[132] A. M. Darwish, A. J. Bayba, A. Khorshid, A. Rajaie, and H. A. Hung, "Calculation of the nonlinear junction temperature for semiconductor devices using linear temperature values," IEEE Transactions on Electron Devices, vol. 59, pp. 2123-2128, 2012.
[133] L. McCarthy, P. Kozodoy, M. Rodwell, S. DenBaars, and U. Mishra, "AlGaN/GaN heterojunction bipolar transistor," IEEE Electron Device Letters, vol. 20, pp. 277-279, 1999.
[134] F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Physical Review B, vol. 56, p. R10024, 1997.
[135] R. Gaska, J. Yang, A. Osinsky, A. Bykhovski, and M. S. Shur, "Piezoeffect and gate current in AlGaN/GaN high electron mobility transistors," Applied physics letters, vol. 71, pp. 3673-3675, 1997.
[136] P. Kordoš, G. Heidelberger, J. Bernát, A. Fox, M. Marso, and H. Lüth, "High-power SiO2/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors," Appl. Phys. Lett, vol. 87, p. 143501, 2005.
[137] X.-H. Ma, J.-J. Zhu, X.-Y. Liao, T. Yue, W.-W. Chen, and Y. Hao, "Quantitative characterization of interface traps in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors by dynamic capacitance dispersion technique," Applied Physics Letters, vol. 103, p. 033510, 2013.
[138] C. Liu, E. F. Chor, and L. S. Tan, "Investigations of HfO2/AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors," Applied physics letters, vol. 88, p. 3504, 2006.
[139] K. Balachander, S. Arulkumaran, Y. Sano, T. Egawa, and K. Baskar, "Fabrication of AlGaN/GaN double‐insulator metal–oxide–semiconductor high‐electron‐mobility transistors using SiO2 and SiN as gate insulators," physica status solidi (a), vol. 202, pp. R32-R34, 2005.
[140] Y. Yue, Y. Hao, J. Zhang, J. Ni, W. Mao, Q. Feng, et al., "AlGaN/GaN MOS-HEMT With Dielectric and Interfacial Passivation Layer Grown by Atomic Layer Deposition," IEEE electron device letters, vol. 29, pp. 838-840, 2008.
[141] S. Basu, P. K. Singh, P.-W. Sze, and Y.-H. Wang, "AlGaN/GaN metal-oxide-semiconductor high electron mobility transistor with liquid phase deposited Al2O3 as gate dielectric," Journal of The Electrochemical Society, vol. 157, pp. H947-H951, 2010.
[142] C. Tsai, T. Wu, and A. Chin, "High-Performance GaN MOSFET With High-Gate Dielectric," IEEE Electron Device Letters, vol. 33, pp. 35-37, 2012.
[143] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, "The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs," IEEE Transactions on Electron Devices, vol. 48, pp. 560-566, 2001.
[144] J. Kuzmik, P. Javorka, A. Alam, M. Marso, M. Heuken, and P. Kordos, "Investigation of self-heating effects in AlGaN-GaN HEMTs," in Electron Devices for Microwave and Optoelectronic Applications, 2001 International Symposium on, 2001, pp. 21-26.
[145] R. Gaska, A. Osinsky, J. Yang, and M. S. Shur, "Self-heating in high-power AlGaN-GaN HFETs," IEEE Electron Device Letters, vol. 19, pp. 89-91, 1998.
[146] A. V. Vertiatchikh and L. F. Eastman, "Effect of the surface and barrier defects on the AlGaN/GaN HEMT low-frequency noise performance," IEEE Electron Device Letters, vol. 24, pp. 535-537, 2003.
[147] B. Kang, H. Wang, F. Ren, B. Gila, C. Abernathy, S. Pearton, et al., "pH sensor using AlGaN/GaN high electron mobility transistors with Sc {sub 2} O {sub 3} in the gate region," Applied physics letters, vol. 91, 2007.
[148] J. R. Creighton and M. E. Coltrin, "Origin of reaction-induced current in Pt/GaN catalytic nanodiodes," The Journal of Physical Chemistry C, vol. 116, pp. 1139-1144, 2011.
[149] J. Schalwig, G. Müller, M. Eickhoff, O. Ambacher, and M. Stutzmann, "Gas sensitive GaN/AlGaN-heterostructures," Sensors and Actuators B: Chemical, vol. 87, pp. 425-430, 2002.
[150] T.-B. Wang, W.-C. Hsu, J.-L. Su, R.-T. Hsu, Y.-H. Wu, Y.-S. Lin, et al., "Comparison of Al0. 32Ga0. 68N∕ GaN Heterostructure Field-Effect Transistors with Different Channel Thicknesses," Journal of The Electrochemical Society, vol. 154, pp. H131-H133, 2007.
[151] C. Collins, U. Chowdhury, M. Wong, B. Yang, A. Beck, R. Dupuis, et al., "Improved solar-blind detectivity using an AlxGa1-xN heterojunction pin photodiode," Applied physics letters, vol. 80, pp. 3754-3756, 2002.
[152] Y.-L. Chou, R.-M. Lin, M.-H. Tung, C.-L. Tsai, J.-C. Li, I.-C. Kuo, et al., "Improvement of surface emission for GaN-based light-emitting diodes with a metal-via-hole structure embedded in a reflector," IEEE Photonics Technology Letters, vol. 23, pp. 393-395, 2011.
[153] F. Van Raay, R. Quay, R. Kiefer, F. Benkhelifa, B. Raynor, W. Pletschen, et al., "A coplanar X-band AlGaN/GaN power amplifier MMIC on si SiC substrate," IEEE Microwave and Wireless Components Letters, vol. 15, pp. 460-462, 2005.