簡易檢索 / 詳目顯示

研究生: 陳勁安
Chen, Jin-An
論文名稱: 探討密碼子使用偏移在哺乳類動物細胞中調控平衡態mRNA 水平的角色
Investigation of the Role of Codon Bias in Regulating Steady-state mRNA Levels in Mammalian Cells
指導教授: 余建泓
Yu, Chien-Hung
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 50
中文關鍵詞: 密碼子使用偏移mRNA的穩定性轉譯效率mRNA的衰變
外文關鍵詞: codon usage bias, mRNA stability, translation efficiency, mRNA decay
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 密碼子使用偏移是指在編碼同一種氨基酸時,同義密碼子的使用頻率並不相等,而這種現象在原核生物及真核生物中視高度保守。然而在同一種生物中,當細胞面對不同的壓力環境(例如營養有限的環境和在生長發育)時,或是不同組織或狀態下的密碼子的使用頻率可能也會不同。在原核生物、較低等的真核生物以及模式生物中已經證明,密碼子使用偏移對於調節共翻譯蛋白折疊,新生信使RNA(mRNA)的轉錄和mRNA的穩定性中具有關鍵性的作用。在發芽酵母中的研究表明mRNA組成富含最佳密碼子(經常使用)時,它們通常具有更高的翻譯效率、穩定性和更高的蛋白質產量。相反地,如果mRNA組成含有大量非最佳密碼子(很少使用),可能會造成核醣體在轉譯時停滯以及較短的mRNA半衰期,最終導致蛋白質合成不完整以及使mRNA被降解。然而,大多數這些作用在哺乳動物中仍不清楚。為了量測密碼子對哺乳動物mRNA的影響,我們設計了具有不同密碼子使用組合的螢火蟲熒光素酶(FL)做為報導基因,再將這些帶有不同密碼子排列組成的質體,轉染到人類細胞株HEK293T或PANC-1中。首先,我們發現與先前的結果不同,無法偵測到非最佳密碼子所組成全長的FL mRNA。接著,藉由交換非最佳編碼序列的區域,我們得到結論,不論位置或長度都有密碼子使用偏移的影響。通過轉譯抑制劑和強力的結構阻止轉譯的發生,無法使以非最佳密碼子組成全長的mRNA 再現,如同最佳密碼子實驗結果。不可思議的是在細胞核中,非最佳密碼子pre-RNA的量如同最佳密碼子的組別。總的來說,我的結果指出密碼子使用偏移在細胞中存在著特異性,一個未確認且與轉譯無關的降解機制,感應密碼子使用偏移在人類細胞中調節mRNA的穩定性。

    Codon usage bias (CUB) refers to the unequal usage of synonymous codons. This CUB phenomenon is highly conserved through prokaryotes to eukaryotes. Even in the same organism, there may be different CUB in different tissues or different status when cells face different stress environments, such as nutrient-limited environments and development. It has been shown, in prokaryotes, lower eukaryotes and model animals, that CUB plays a critical role in regulating co-translational protein folding, nascent messenger RNA (mRNA) transcription and mRNA stability. Previous studies in budding yeast showed that when transcripts enrich with optimal codons (frequently used), they usually have higher translation efficiency, more stable mRNA, and higher protein production. Otherwise, transcripts with abundant non-optimal codons (rarely used) may result in stalling of ribosomes and shorter mRNA half-life, which ultimately leads to incomplete protein synthesis and mRNA degradation. However, most of these effects are still unclear in mammals. To monitor the codon effect on mRNA levels in mammals, we designed firefly luciferase (FL) reporter genes with distinct codon usage patterns followed by the transfection of these constructs into target cell lines, HEK293T or Panc-1. We observed that the full-length of non-optimal FL mRNA is undetectable, unlike to previous results. Next, by swapping the non-optimal coding sequences, we concluded that the position and the length are coordinated the CUB effect on mRNA level. Blocking the translation by translation inhibitor and/or a strong structure cannot rescue the poor codon mRNA. Intriguingly, the pre-mRNA level of non-optimal FL is similar to the optimal ones. In sum, my data suggested that there existed a cell type-specific unidentified translation-independent degradation that senses CUB to regulate transcript stability in human cells.

    ENGLISH ABSTRACT...........I 中文摘要...................II Acknowledgement..........III CONTENTS..................IV LIST OF FIGURES............V ABBREVIATION LIST.........VI INTRODUCTION...............1 MATERIALS and METHODS......5 RESULTS...................17 DISCUSSION................25 CONCLUSION................28 REFERENCES................29 FIGURES...................31 APPENDIX..................49

    REFERENCES
    1. Sharp, P.M. and W.-H. Li, The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research, 1987. 15(3): p. 1281-1295.
    2. Ikemura, T., Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: A proposal for a synonymous codon choice that is optimal for the E. coli translational system. Journal of Molecular Biology, 1981. 151(3): p. 389-409.
    3. Kudla, G., et al., Coding-sequence determinants of gene expression in Escherichia coli. science, 2009. 324(5924): p. 255-258.
    4. Ghaemmaghami, S., et al., Global analysis of protein expression in yeast. Nature, 2003. 425(6959): p. 737-741.
    5. Yang, Q., et al., eRF1 mediates codon usage effects on mRNA translation efficiency through premature termination at rare codons. Nucleic Acids Res, 2019. 47(17): p. 9243-9258.
    6. Redemann, S., et al., Codon adaptation–based control of protein expression in C. elegans. Nature Methods, 2011. 8(3): p. 250-252.
    7. Fu, J., et al., Codon usage affects the structure and function of the Drosophila circadian clock protein PERIOD. Genes & development, 2016. 30(15): p. 1761-1775.
    8. Chu, D., et al., Translation elongation can control translation initiation on eukaryotic mRNAs. The EMBO Journal, 2014. 33(1): p. 21-34.
    9. Gingold, H. and Y. Pilpel, Determinants of translation efficiency and accuracy. Molecular Systems Biology, 2011. 7(1): p. 481.
    10. Buhr, F., et al., Synonymous Codons Direct Cotranslational Folding toward Different Protein Conformations. Molecular Cell, 2016. 61(3): p. 341-351.
    11. Kimchi-Sarfaty, C., et al., A Silent Polymorphism in the MDR1 Gene Changes Substrate Specificity. Science, 2007. 315(5811): p. 525.
    12. Zhou, M., et al., Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature, 2013. 495(7439): p. 111-115.
    13. Xu, Y., et al., Non-optimal codon usage is a mechanism to achieve circadian clock conditionality. Nature, 2013. 495(7439): p. 116-120.
    14. Zhou, Z., et al., Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci U S A, 2016. 113(41): p. E6117-E6125.
    15. Yu, C.H., et al., Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding. Mol Cell, 2015. 59(5): p. 744-54.
    16. Presnyak, V., et al., Codon optimality is a major determinant of mRNA stability. Cell, 2015. 160(6): p. 1111-24.
    17. Doma, M.K. and R. Parker, Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature, 2006. 440(7083): p. 561-564.
    18. Tsuboi, T., et al., Dom34:Hbs1 Plays a General Role in Quality-Control Systems by Dissociation of a Stalled Ribosome at the 3′ End of Aberrant mRNA. Molecular Cell, 2012. 46(4): p. 518-529.
    19. Radhakrishnan, A., et al., The DEAD-Box Protein Dhh1p Couples mRNA Decay and Translation by Monitoring Codon Optimality. Cell, 2016. 167(1): p. 122-132 e9.
    20. Hia, F., et al., Codon bias confers stability to human mRNAs. EMBO Rep, 2019. 20(11): p. e48220.
    21. Wu, Q., et al., Translation affects mRNA stability in a codon-dependent manner in human cells. Elife, 2019. 8.
    22. Burow, D.A., et al., Attenuated Codon Optimality Contributes to Neural-Specific mRNA Decay in Drosophila. Cell Rep, 2018. 24(7): p. 1704-1712.
    23. Bazzini, A.A., et al., Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition. EMBO J, 2016. 35(19): p. 2087-2103.
    24. Mishima, Y. and Y. Tomari, Codon Usage and 3′ UTR Length Determine Maternal mRNA Stability in Zebrafish. Molecular Cell, 2016. 61(6): p. 874-885.
    25. Tian, B. and J.L. Manley, Alternative polyadenylation of mRNA precursors. Nature Reviews Molecular Cell Biology, 2017. 18(1): p. 18-30.
    26. Zhou, Z., et al., Codon usage biases co-evolve with transcription termination machinery to suppress premature cleavage and polyadenylation. Elife, 2018. 7.
    27. Decker, C.J. and R. Parker, P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol, 2012. 4(9): p. a012286.
    28. Kamieniarz-Gdula, K. and N.J. Proudfoot, Transcriptional Control by Premature Termination: A Forgotten Mechanism. Trends Genet, 2019. 35(8): p. 553-564.
    29. Tuller, T., et al., An Evolutionarily Conserved Mechanism for Controlling the Efficiency of Protein Translation. Cell, 2010. 141(2): p. 344-354.
    30. Shoemaker, C.J. and R. Green, Translation drives mRNA quality control. Nature Structural & Molecular Biology, 2012. 19(6): p. 594-601.
    31. Mordstein, C., et al., Codon Usage and Splicing Jointly Influence mRNA Localization. Cell Syst, 2020. 10(4): p. 351-362 e8.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE