| 研究生: |
陳映廷 Chen, Ying-Ting |
|---|---|
| 論文名稱: |
探討熱處理對於噴覆成型高矽量Al-Si-Cu-Mg-Ni及Al-Si-Zn-Fe-Mg合金之機械性質與磨耗性質之影響 Study the influence of Heat Treatment on the Mechanical and Wear properties of High Si-Containing Al-Si-Cu-Mg-Ni and Al-Si-Zn-Fe-Mg Alloys Synthesized by Spray Forming Process |
| 指導教授: |
曹紀元
Tsao, Chi-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 鋁矽合金 、熱處理 、背向式擠型 、高溫機械性質 、磨耗性質 |
| 外文關鍵詞: | Al-Si alloys, Spray-formed, Backward extrusion, Thermo-mechanical properties, Wear properties |
| 相關次數: | 點閱:106 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工業發展至今,伴隨著汽機油所帶來的全球暖化、石油危機等所帶來的經濟問題也日漸加重,因此為降低汽機車產業上能量損耗,便尋求各類輕金屬做為汽機車各部件之材料。
機車引擎工作溫度約在150~250℃,且活塞與汽缸套之間劇烈地往復運動作用,其主要與汽缸套對磨的為活塞上之活塞環,活塞環須密封燃燒室內的可燃混合氣體以及刮除汽缸上多餘的機油,且活塞環材質通常為較硬之鋼材或球墨鑄鐵,因此汽缸套材料需有較好之高溫熱機性質及耐磨耗性質。
但一般鋁合金的耐磨耗性、高溫強度、熱膨脹係數等性質上不具有特殊優勢。但若在鋁合金中加入高量之矽元素並輔以高溫熱處理,則可同時大幅改善以上問題。在傳統製程中,過共晶Al-Si 合金會有粗大初晶矽,造成其延展性下降,難以進行後續加工與成型。所以改以合金設計與先進之「噴覆成型」製程製作出具有等軸細小初晶矽的高矽鋁合金。
本研究利用背向式擠型加工噴覆成型之高矽鋁合金,並探討不同高溫熱處理時間對於材料顯微組織之影響、高溫機械性質、磨耗性質,晶粒、矽顆粒、高溫拉伸試驗及磨耗試驗之結果之影響
With Industrial development, The economic Crisis that oil Shortage and the Global warming cause is getting worse, In order to reduce the energy problem ,we can start from replacing the motorcycle engine block material. Normally the material of traditional engine block is gray cast iron, the problem of cast iron is its weight, the more weight of engine block is, and the more energy has to be consumed. So we decide to use light metal to replace the gray cast iron as the material of engine block.
Motorcycle engine operated at 150 ℃~250℃ and piston rings move up and down reciprocally with the piston. The functions of a piston ring are to seal off the combustion pressure, to distribute and control the oil, to transfer heat, and to stabilize the piston. Therefore, the cylinder liner need excellence thermo-mechanical properties and wears properties.
In this study, we utilize the spray-forming process combined with post process such as backward extrusion and high temperature heat treatment to produced high Si-containing aluminum alloys test sample(AC9A-30Si and AZFM-30Si), Base on previous statement. 250℃tensile test and wear test(170℃) was employed to study the Thermo-mechanical properties and establish the wear mechanism of high Si-containing aluminum alloys at elevated temperature .
Beside the study of mechanical property and wear mechanism at elevated temperature, Also compare different post heat treatment parameter (Heat treatment Time) effect on mechanical and wear property . As a result we could established the optimum post process parameter for high Si-containing aluminum alloys engine block.
1. YUE WU, W.A.C., and ENRIQUE J. LAVERNIA, Microstructure and Mechanical Properties of Spray-Deposited Al-17Si-4.5Cu-0.6Mg Wrought Alloy. METALLURGICAL AND MATERIALS TRANSACTIONS A, 1995.
2. Raju, K., S.N. Ojha, and A.P. Harsha, Spray forming of aluminum alloys and its composites: an overview. Journal of Materials Science, 2008. 43(8): p. 2509-2521.
3. Yang, Y., et al., Evolution of nickel-rich phases in Al–Si–Cu–Ni–Mg piston alloys with different Cu additions. Materials & Design, 2012. 33: p. 220-225.
4. Moffat, A., et al., The effect of silicon content on long crack fatigue behaviour of aluminium–silicon piston alloys at elevated temperature. International Journal of Fatigue, 2005. 27(10-12): p. 1564-1570.
5. Mohamed, A.M.A., F.H. Samuel, and S.A. kahtani, Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys. Materials Science and Engineering: A, 2013. 577: p. 64-72
6. Hou, L.G., et al., Extrusion, Properties, and Failure of Spray-Formed Hypereutectic Al-Si Alloys Based on the Optimization of Fe-Bearing Phase. Metallurgical and Materials Transactions A, 2012. 44(4): p. 1814-1826.
7. 蘇彥豪, <汽車引擎用噴覆成型高矽鋁合金汽缸套之開發>. 2004.
8. Shabestari, S.G. and R. Gholizadeh, Assessment of intermetallic compound formation during solidification of Al–Si piston alloys through thermal analysis technique. Materials Science and Technology, 2012. 28(2): p. 156-164
9. Goudar, D.M., et al., Effect of copper and iron on the wear properties of spray formed Al–28Si alloy. Materials & Design, 2013. 51: p. 383-390.
10. J. Zhou, J.D., B. M. Korevaar, <Microstructural features and final mechanical properties of the iron-modified Al-20Si-3Cu-1Mg alloy product processed from atomized powder.pdf>. 1991.
11. Farkoosh, A.R., et al., Phase formation in as-solidified and heat-treated Al–Si–Cu–Mg–Ni alloys: Thermodynamic assessment and experimental investigation for alloy design. Journal of Alloys and Compounds, 2013. 551: p. 596-606.
12. Jeong, C.-Y., High Temperature Mechanical Properties of Al-Si-Mg-(Cu) Alloys for Automotive Cylinder Heads. Materials Transactions, 2013: p. 588-594.
13. B Yang, F.W., J. S Zhang, B. Q Xiong, X. J Duan, <The effect of Mn on the microstructure of spray-deposited Al–20Si–5Fe–3Cu–1Mg alloy>. 2001.
14. Cai, Y., et al., Effect of Cr and Mn on the microstructure of spray-formed Al–25Si–5Fe–3Cu alloy. Materials Science and Engineering: A, 2011. 528(12): p. 4248-4254.
15. Feng, W., et al., Microstructure, Mechanical Properties, and Age-Hardening Behavior of an Al-Si-Fe-Mn-Cu-Mg Alloy Produced by Spray Deposition. Journal of Materials Engineering and Performance, 2010. 20(1): p. 155-159.
16. Farkoosh, A.R. and M. Pekguleryuz, The effects of manganese on the Τ-phase and creep resistance in Al–Si–Cu–Mg–Ni alloys. Materials Science and Engineering: A, 2013. 582: p. 248-256.
17. Gomes, R.M., et al., Precipitation Strengthening and Mechanical Properties of Hypereutectic P/M Al-Si-Cu-Mg Alloys Containing Fe and Ni. Materials Science Forum, 1996. 217-222: p. 789-794
18. Bai, P., et al., Microstructure and mechanical properties of a large billet of spray formed Al–Zn–Mg–Cu alloy with high Zn content. Materials Science and Engineering: A, 2009. 508(1-2): p. 23-27
19. Cui, C., et al., Spray forming of hypereutectic Al–Si alloys. Journal of Materials Processing Technology, 2009. 209(11): p. 5220-5228.
20. McQueen, H.J., et al., <Hot Deformation and Processing of Aluminum Alloys Chapter7 Aluminum Matrix Composites>. 2011
21. MILLER, W.S. and F.J. HUMPHREYS, <STRENGTHENING MECHANISMS IN PARTICULATE METAL MATRIX COMPOSITES>. Scripta METALLURGICA et MATERIALIA 1991. 25: p. 33-38.
22. Courtney, T.H., Mechanical Behavior of Materials: Second Edition. 2005: Waveland Press.
23. M.KOUZELI, et al., <Influence of damage on the tensile behaviour of pure aluminium reinforced with ≥40 vol. pct alumina particles.pdf>. Acta Mater, 2001: p. 3699-3709.
24. M.J.HADIANFARD,J.HEALY, and Y.W.MAI, <Fracture characteristics of a particulate-reinforced metal matrix composite.pdf>. JOURNAL OF MATERIALS SCIENCE, 1994: p. 2321-2327.
25. Peris, R.G., <Effects of extrusion conditions on ”Die Pick-Up” formed during extrusion of aluminium alloy AA6060.pdf>. 2007.
26. Bhushan, B., Modern tribology handbook, two volume set. 2000: CRC press
27. Kato, K., Classification of Wear Mechanisms/Models, in Wear – Materials, Mechanisms and Practice. 2005, John Wiley & Sons Ltd. p. 9-20.
28. J.D.Gates, <Two-body and three-body abrasion- A critical discussion>. Wear, 1998: p. 139-146.
29. CLARKE, J. and A.D.SARKAR, <Wear characteristics of as-cast binary aluminium-silicon alloys>. Wear, 1979: p. 7-16
30. H.Torabian, J.P.Pathak, and S.N.Tiwari, <Wear characteristics of Al-Si alloys>. Wear, 1994: p. 49-58.
31. Wang, F., et al., Effect of Si content on the dry sliding wear properties of spray-deposited Al–Si alloy. Materials & Design, 2004. 25(2): p. 163-166.
32. Elmadagli, M., T. Perry, and A.T. Alpas, A parametric study of the relationship between microstructure and wear resistance of Al–Si alloys. Wear, 2007. 262(1-2): p. 79-92.
33. Payne, M.J., et al., Tribological performance of an Al–Si alloy lubricated in the boundary regime with zinc dialkyldithiophosphate and molybdenum dithiocarbamate additives. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2008. 222(3): p. 305-314.
34. SANJIB K. DEY., et al., ELEVATED TEMPERATURE LUBRICATED WEAR OF Al-Si ALLOYS 2012-Chapter5-6
35. 陳亮嘉, 表面粗度量測原理與技術. 2012.
36. 郭威廷, 噴覆成型高矽量Al-Si-Cu-Mg-Ni及Al-Si-Zn-Fe-Mg合金之高溫機械性質與磨耗性質探討 2016
37. 陳俊銘 , 噴覆成型高矽量Al-Si-Zn-Fe-Mg合金的塑性加工性及高溫機械性質探討 2016
38. X.P. Li., et al., A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility 2015
39. Kh. A Ragab, et al. Effect of rapid heating on quality assessment of
356 and 319 aluminium cast alloys using fluidized bed 2013
40. Y. Zedan , et al. Effects of Fe intermetallics on the machinability of heat-treated Al–(7–11)% Si alloys 2010
41. Juan Francisco Hernandez Paz, Heat Treatment and Precipitation in A356 Aluminum Alloy 2003
42. C.M. Chen , et al Dry sliding wear behaviors of Al–25Si–2.5Cu–1Mg alloys prepared by powder thixocasting 2005
43. Rl'ickert et al. CYLINDER LINER OF A HYPEREUTECTIC ALUMINUM/SILICON ALLOY FOR USE IN A-CRANKCASE OF A RECIPROCATING PISTON ENGINE AND PROCESS PRODUCING SUCH A CYLINDER LINER Unied State Patent US006096143A 1997
44. Warmuzek, M., Chemical composition of the Ni-containing intermetallic phases in the multicomponent Al alloys. Journal of Alloys and Compounds, 2014. 604: p. 245-252.
45. 四行程引擎的作動. Available from: http://163.27.127.130/office16/%E6%A9%9F%E8%B8%8F%E8%BB%8A%E8%B3%87%E6%96%99/%E5%BC%95%E6%93%8E%E7%AF%87/%E5%9B%9B%E8%A1%8C%E7%A8%8B%E5%BC%95%E6%93%8E%E7%9A%84%E4%BD%9C%E5%8B%95.htm
46. Jeffrey Jocsak The Effects of Surface Finish on Piston Ring-pack Performance in Advanced Reciprocating Engine Systems 2005
47. Aerospace Engineering Guide ,Avaioliable from: http://www.alphaomegapt.com/pdf%20files/Surface%20Finish%20Definitions.pdf