| 研究生: |
鐘曼倩 Chung, Man-Chien |
|---|---|
| 論文名稱: |
兩階段厭氧能源程序處理蔗渣生質酒精殘渣廢液之研究 Study of a two-stage anaerobic energy production process treating bagasse bioethanol residues |
| 指導教授: |
黃良銘
Liang-Ming, Whang, |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 生質酒精殘渣 、兩階段式生物程序 、厭氧產氫發酵 、甲烷化發酵 |
| 外文關鍵詞: | alcohol fermentation residue, anaerobic hydrogen fermentation, methanogenesis, two-stage bioenergy process |
| 相關次數: | 點閱:122 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年因為能源危機及全球暖化的問題,各國皆積極在尋找乾淨且可再生之替代能源,其中生質能更是成為積極發展的重點,主要是因為生質能為"碳中性"的能源,製造過程為碳循環的一部分,並不會造成額外的二氧化碳生成,其中生質酒精就是其中一種。然而目前科技利用纖維料原生產生質酒精時,大約只有75~80%的電子能轉移至生質酒精上,意指大約還有20~25%的能源在殘渣中尚未被利用,若能有效利用殘渣,不但能處理廢棄物問題,更能從中回收能源再利用。故本研究將針對利用蔗渣作為生質酒精原料後之廢液,將其作為基質進行生質氫氣與甲烷之發酵,此批廢水之總化學需氧量(Chemical Oxygen Demand ,COD)約30 g/L,含有大量的有機物質,其中碳水化物的部分佔30 %,有機酸佔33%及乙醇佔12%,十分適合利用利用兩階段式生質能源程序來處理。
在第一階段連續式產氫發酵槽中,共操作了9個試程,發現在體積負荷(volumetric loading rate, VLR)為180 kg COD/m3/day的操作條件下有最佳的產氫表現,比產氫速率(specific hydrogen production rate, S.HPR)為37.64 ml/H2/g VSS/hr,氫氣產率(hydrogen yield)則為29.21 ml H2/g COD,氫氣組成約有38%,產氫速率及氫氣產率可做為日後實場化的工程依據。在厭氧產氫的批次中,得知縮短水力停留時間(Hydraulic Retention Time, HRT)能有效提升氫氣產率及微生物對於基質的負荷量,另外基質的負荷及乙酸化(Acetogenesis)也是影響產氫的重要因子。在甲烷發酵槽方面,當體積負荷為3.7 kg COD/m3 /day時有最好的產氣速率表現,其甲烷生成速率(methane production rate)為1.12 L CH4/L/day。
在整體兩階段操作完後COD去除率可達87.1%的,其中電子轉移至氫氣及甲烷的比例分別為0.3%及78.9%,顯示此兩階段式生質能源程序,能有效進行生質能源的再利用。
Global warming and energy crisis have already been proved as internal issues in recent years. The governments paid much attention to finding a clean and renewable energy. Therefore, developing biomass energy is main purpose for many counties. Biomass is considered as a carbon neutral source of energy because the carbon dioxide released into atmosphere by using biomass is recovered again by growth of new biomass. Bioethanol is one of biomass energy. Current technologies can only utilize 75-80% of the energy during cellulosic bioethanol fermentation, which implies that 20-25% might be wasted as residues. Thus, this study has focused on the energy recovery from cellulosic bioethanol residues. The characteristics of the bagasse alcohol fermentation residue were studied. The COD was 30000 mg/L, with a large amount of organics. For the electron distribution, carbohydrates comprised 37% of the total COD, and this portion can be fermented to hydrogen. On the other hand, the remaining organic acids (12%) and alcohols (42%), together with the volatile fatty acids produced in hydrogen fermentation, can further be utilized by methanogens to produce methane as energy product. Therefore, a two-stage bioreactor with hydrogen fermentation and methanogenesis was established in this study to treat this bagasse alcohol fermentation residue.
There were nine runs in the CSTR anaerobic hydrogen fermentation tank. The maximum specific H2 production rate and yield were investigated to be 37.64 mL H2/g VSS/hr and 29.21 mL H2/g COD when volumetric loading rate (VLR) was 180 kg COD/m3/day. By carrying out batch experiment, shortening HRT could enhance hydrogen yield and the loading of microorganism to substrate .Acetogenesis and S0/X0, or F/M ratio in CSTR, were found to be important factors on the efficiency of biohydrogen production. B/A ratio has been used as an indicator for evaluating the effectiveness of biohydrogen production. The best performance of the methane bioreactor in the view of methane production was obtained under VLR of 3.7kg COD/m3/day, in which 1.12 L CH4/L/day was achieved.
Approximately 87.1% of the COD in the bioethanol-fermentation residues was removed, with about 0.3% and 78.9% of it were recovered in the forms of hydrogen and methane. Results indicate that cellulosic bioethanol residues are also suitable for hydrogen and methane fermentation.
白明德、鄭幸雄 (2002). 厭氧氫發酵程序中氫分壓的影響與重要性. 第27屆廢水研討會.
任維傑 (2006). 探討厭氧產氫純菌Clostridium在不同pH 下之反應動力機制. 環境工程學系, 國立成功大學. 碩士論文.
張仕旻 (2001). 利用薄膜反應器於高溫厭氧產氫生物程序之研究. 環境工程學系, 國立成功大學.
梁德明, 鄭幸雄, et al. (2002a). Behavior of gas separation for submersed hollow fibers installed in an anaerobic hydrogen fermentor. 第27屆廢水研討會論文集.
梁德明、鄭幸雄 (2002b). Behavior of gas separation for submersed hollow fibers installed in an anaerobic hydrogen fermentor. 第27屆廢水研討會論文集.
劉怡君 (2006). Clostridium tyrobutyricum 在不同水力停留時間下之代謝表現與產氫行為之研究. 環境工程學系, 國立成功大學. 碩士論文.
鄭幸雄, 白明德, et al. (2003a). 厭氧產氫菌分解高分子碳水化合物及peptone之產氫機制. 第28屆廢水研討會論文集.
鄭幸雄, 白明德, et al. (2003b). 厭氧產氫菌分解蛋白質之機制探討. 第28屆廢水研討會論文集.
鄭幸雄, 林秋裕, et al. (2003). 複合基質生物產氫機制及程序應用之整合研究-2002. 第28屆廢水研討會論文集.
Abbasi, T. and S. Abbasi (2010). "Biomass energy and the environmental impacts associated with its production and utilization." Renewable and Sustainable Energy Reviews 14(3): 919-937.
Akutsu, Y., Y.-Y. Li, H. Harada and H.-Q. Yu (2009). "Effects of temperature and substrate concentration on biological hydrogen production from starch." International Journal of Hydrogen Energy 34(6): 2558-2566.
Andreesen, J., H. Bahl and G. Gottschalk (1989). "Introduction to the Physiology and Biochemistry of the Genus Clmlridium." Clostridia 3: 27.
Angenent, L. T., K. Karim, M. H. Al-Dahhan, B. A. Wrenn and R. Domíguez-Espinosa (2004). "Production of bioenergy and biochemicals from industrial and agricultural wastewater." Trends in Biotechnology 22(9): 477-485.
Antonopoulou, G., K. Stamatelatou, N. Venetsaneas, M. Kornaros and G. Lyberatos (2008). "Biohydrogen and methane production from cheese whey in a two-stage anaerobic process." Industrial & Engineering Chemistry Research 47(15): 5227-5233.
Arooj, M. F., S.-K. Han, S.-H. Kim, D.-H. Kim and H.-S. Shin (2008). "Continuous biohydrogen production in a CSTR using starch as a substrate." international journal of Hydrogen Energy 33(13): 3289-3294.
Association, R. F. (2010). US fuel ethanol industry biorefineries and capacity.
Axley, M., D. A. Grahame and T. C. Stadtman (1990). "Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component." Journal of Biological Chemistry 265(30): 18213-18218.
Baghchehsaraee, B., G. Nakhla, D. Karamanev, A. Margaritis and G. Reid (2008). "The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures." International Journal of Hydrogen Energy 33(15): 4064-4073.
Baronofsky, J. J., W. J. Schreurs and E. R. Kashket (1984). "Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermoaceticum." Applied and environmental microbiology 48(6): 1134-1139.
Batstone, D. J., J. Keller, I. Angelidaki, S. Kalyuzhnyi, S. Pavlostathis, A. Rozzi, W. Sanders, H. Siegrist and V. Vavilin (2002). "The IWA Anaerobic Digestion Model No 1(ADM 1)." Water Science & Technology 45(10): 65-73.
Bayrock, D. and W. Ingledew (2001). "Changes in steady state on introduction of a Lactobacillus contaminant to a continuous culture ethanol fermentation." Journal of Industrial Microbiology and Biotechnology 27(1): 39-45.
Brentner, L. B., J. Peccia and J. B. Zimmerman (2010). "Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda." Environmental science & technology 44(7): 2243-2254.
Brosseau, J. D. and J. Zajic (1982). "Hydrogen‐gas production with Citrobacter intermedim and Clostridium pasteurianum." Journal of Chemical Technology and Biotechnology 32(3): 496-502.
Buchanan, B. and D. I. Arnon (1970). "Ferredoxins: chemistry and function in photosynthesis, nitrogen fixation, and fermentative metabolism." Adv Enzymol Relat Areas Mol Biol 33: 119-176.
Cai, M., J. Liu and Y. Wei (2004). "Enhanced biohydrogen production from sewage sludge with alkaline pretreatment." Environmental science & technology 38(11): 3195-3202.
Calli, B., J. Zhao, E. Nijssen and K. Vanbroekhoven (2008). "Significance of acetogenic H2 consumption in dark fermentation and effectiveness of pH." Water science and technology 57(6): 809-814.
Calusinska, M., T. Happe, B. Joris and A. Wilmotte (2010). "The surprising diversity of clostridial hydrogenases: a comparative genomic perspective." Microbiology 156(6): 1575-1588.
Cardona, C. A. and Ó. J. Sánchez (2007). "Fuel ethanol production: process design trends and integration opportunities." Bioresource technology 98(12): 2415-2457.
Chen, C.-Y., M.-H. Yang, K.-L. Yeh, C.-H. Liu and J.-S. Chang (2008). "Biohydrogen production using sequential two-stage dark and photo fermentation processes." International Journal of Hydrogen Energy 33(18): 4755-4762.
Chen, C., C. Lin and J. Chang (2001). "Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate." Applied microbiology and biotechnology 57(1-2): 56-64.
Cheng, H.-H., L.-M. Whang, C.-W. Wu and M.-C. Chung (2012). "A two-Stage Bioprocess for Hydrogen and Methane Production from Rice Straw Bioethanol Residues." Bioresource Technology.
Cheng, J. (2010). Biomass to renewable energy processes, CRC Press Inc.
Chu, C.-F., Y.-Y. Li, K.-Q. Xu, Y. Ebie, Y. Inamori and H.-N. Kong (2008). "A pH-and temperature-phased two-stage process for hydrogen and methane production from food waste." International journal of hydrogen energy 33(18): 4739-4746.
Claassen, P., J. Van Lier, A. L. Contreras, E. Van Niel, L. Sijtsma, A. Stams, S. De Vries and R. Weusthuis (1999). "Utilisation of biomass for the supply of energy carriers." Applied microbiology and biotechnology 52(6): 741-755.
Clayton, M. (2008). "As global food costs rise, are biofuels to blame." Christian Sci Monitor 28.
Cooney, M., N. Maynard, C. Cannizzaro and J. Benemann (2007). "Two-phase anaerobic digestion for production of hydrogen-methane mixtures." Bioresource technology 98(14): 2641-2651.
Cord-Ruwisch, R., H.-J. Seitz and R. Conrad (1988). "The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor." Archives of Microbiology 149(4): 350-357.
Crabbendam, P. M., O. Neijssel and D. Tempest (1985). "Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture." Archives of microbiology 142(4): 375-382.
Dabrock, B., H. Bahl and G. Gottschalk (1992). "Parameters affecting solvent production by Clostridium pasteurianum." Applied and Environmental Microbiology 58(4): 1233-1239.
Das, D. and T. N. Veziroǧlu (2001). "Hydrogen production by biological processes: a survey of literature." International Journal of Hydrogen Energy 26(1): 13-28.
Davila-Vazquez, G., S. Arriaga, F. Alatriste-Mondragón, A. de León-Rodríguez, L. M. Rosales-Colunga and E. Razo-Flores (2008). "Fermentative biohydrogen production: trends and perspectives." Reviews in Environmental Science and Biotechnology 7(1): 27-45.
Demirbaş, A. (2003). "Energy and environmental issues relating to greenhouse gas emissions in Turkey." Energy Conversion and Management 44(1): 203-213.
Demirbaş, A. (2006). "Global renewable energy resources." Energy sources 28(8): 779-792.
Demirel, B. and O. Yenigün (2002). "Two‐phase anaerobic digestion processes: a review." Journal of Chemical Technology and Biotechnology 77(7): 743-755.
Desvaux, M., E. Guedon and H. Petitdemange (2000). "Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium." Applied and environmental microbiology 66(6): 2461-2470.
Diez-Gonzalez, F., J. B. Russell and J. B. Hunter (1995). "The role of an NAD-independent lactate dehydrogenase and acetate in the utilization of lactate byClostridium acetobutylicum strain P262." Archives of microbiology 164(1): 36-42.
Dinamarca, C. and R. Bakke (2009). "Apparent hydrogen consumption in acid reactors: observations and implications." Water Science and Technology 59(7): 1441-1447.
Dipaola, M. and V. Spada (2010). Biohydrogen production: limits and prospects. XXIV National Congress of Commodity Science, Torino-Alba, Italy, 23-24 June 2009., Cooperativa Libraria Universitaria Editrice Bologna (CLUEB).
Dunn, S. (2002). "Hydrogen futures: toward a sustainable energy system." International journal of hydrogen energy 27(3): 235-264.
Eaton, A. D. and M. A. H. Franson (2005). Standard methods for the examination of water & wastewater, American Public Health Association.
Eggeman, T. and R. T. Elander (2005). "Process and economic analysis of pretreatment technologies." Bioresource technology 96(18): 2019-2025.
Ezeji, T., N. Qureshi and H. Blaschek (2004). "Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping." Applied microbiology and biotechnology 63(6): 653-658.
Fabiano, B. and P. Perego (2002). "Thermodynamic study and optimization of hydrogen production by< i> Enterobacter aerogenes</i>." International Journal of Hydrogen Energy 27(2): 149-156.
Fridleifsson, I. B. (2001). "Geothermal energy for the benefit of the people." Renewable and Sustainable Energy Reviews 5(3): 299-312.
Gößner, A. S., F. Picardal, R. S. Tanner and H. L. Drake (2008). "Carbon metabolism of the moderately acid‐tolerant acetogen Clostridium drakei isolated from peat." FEMS microbiology letters 287(2): 236-242.
Gibson, A., R. Ellis-Brownlee, M. Cahill, E. Szabo, G. Fletcher and P. Bremer (2000). "The effect of 100% CO2 on the growth of nonproteolytic< i> Clostridium botulinum</i> at chill temperatures." International journal of food microbiology 54(1): 39-48.
Ginkel, S. V., S. Sung and J.-J. Lay (2001). "Biohydrogen production as a function of pH and substrate concentration." Environmental science & technology 35(24): 4726-4730.
Giordano, A., C. Cantù and A. Spagni (2011). "Monitoring the biochemical hydrogen and methane potential of the two-stage dark-fermentative process." Bioresource technology 102(6): 4474-4479.
Girbal, L., J. Örlygsson, B. J. Reinders and J. C. Gottschal (1997). "Why does Clostridium acetireducens not use interspecies hydrogen transfer for growth on leucine?" Current Microbiology 35(3): 155-160.
Girbal, L. and P. Soucaille (1994). "REGULATION OF CLOSTRIDIUM-ACETOBUTYLICUM METABOLISM AS REVEALED BY MIXED-SUBSTRATE STEADY-STATE CONTINUOUS CULTURES - ROLE OF NADH/NAD RATIO AND ATP POOL." Journal of Bacteriology 176(21): 6433-6438.
Girbal, L. and P. Soucaille (1998). "Regulation of solvent production in Clostridium acetobutylicum." Trends in Biotechnology 16(1): 11-16.
Goldemberg, J. and T. B. Johansson (2004). World Energy Assessment: Overview: 2004 Update, United Nations Publications.
Gottschalk, G. (1986). Bacterial metabolism, Springer Verlag.
Gottwald, M. and G. Gottschalk (1985). "The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation." Archives of microbiology 143(1): 42-46.
Gujer, W. and A. Zehnder (1983). "Conversion processes in anaerobic digestion." Water Science & Technology 15(8-9): 127-167.
Hüsemann, M. H. and E. T. Papoutsakis (1989). "Comparison between in vivo and in vitro enzyme activities in continuous and batch fermentations of Clostridium acetobutylicum." Applied microbiology and biotechnology 30(6): 585-595.
Hafez, H., G. Nakhla, M. H. El Naggar, E. Elbeshbishy and B. Baghchehsaraee (2010). "Effect of organic loading on a novel hydrogen bioreactor." international journal of hydrogen energy 35(1): 81-92.
Han, S. K. and H. S. Shin (2004). "Performance of an innovative two-stage process converting food waste to hydrogen and methane." Journal of the Air & Waste Management Association 54(2): 242-249.
Hari Krishna, S., T. Janardhan Reddy and G. Chowdary (2001). "Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast." Bioresource technology 77(2): 193-196.
Harold, F. (1972). "Conservation and transformation of energy by bacterial membranes." Bacteriological reviews 36(2): 172.
Hashsham, S. A., A. S. Fernandez, S. L. Dollhopf, F. B. Dazzo, R. F. Hickey, J. M. Tiedje and C. S. Criddle (2000). "Parallel processing of substrate correlates with greater functional stability in methanogenic bioreactor communities perturbed by glucose." Applied and environmental microbiology 66(9): 4050-4057.
Hawkes, F. R., H. Forsey, G. C. Premier, R. M. Dinsdale, D. L. Hawkes, A. J. Guwy, J. Maddy, S. Cherryman, J. Shine and D. Auty (2008). "Fermentative production of hydrogen from a wheat flour industry co-product." Bioresource technology 99(11): 5020-5029.
Hefner Iii, R. A. (2002). "The age of energy gases." International journal of hydrogen energy 27(1): 1-9.
Herbert, D., P. Philipps and R. Strange (1971). "Carbohydrate analysis." Methods Enzymol. B 5: 265-277.
Herrero, A. A., R. F. Gomez, B. Snedecor, C. J. Tolman and M. F. Roberts (1985). "Growth inhibition of Clostridium thermocellum by carboxylic acids: a mechanism based on uncoupling by weak acids." Applied microbiology and biotechnology 22(1): 53-62.
Heyndrickx, M., P. D. Vos and J. D. Ley (1991). "Fermentation characteristics of Clostridium pasteurianum LMG 3285 grown on glucose and mannitol." Journal of Applied Microbiology 70(1): 52-58.
Ho, N. W., Z. Chen, A. P. Brainard and M. Sedlak (1999). Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Recent Progress in Bioconversion of Lignocellulosics, Springer: 163-192.
Hussy, I., F. Hawkes, R. Dinsdale and D. Hawkes (2003). "Continuous fermentative hydrogen production from a wheat starch co‐product by mixed microflora." Biotechnology and bioengineering 84(6): 619-626.
Imkamp, F. and V. Müller (2007). "Acetogenic bacteria." eLS.
Jeffries, T. W. and Y.-S. Jin (2000). "Ethanol and thermotolerance in the bioconversion of xylose by yeasts." Advances in applied microbiology 47: 221-268.
Jewell, W. J. (1987). "Anaerobic sewage treatment. Part 6." Environmental science & technology 21(1): 14-21.
Jo, J. H., C. O. Jeon, S. Y. Lee, D. S. Lee and J. M. Park (2010). "Molecular characterization and homologous overexpression of [FeFe]-hydrogenase in< i> Clostridium tyrobutyricum</i> JM1." international journal of hydrogen energy 35(3): 1065-1073.
Jo, J. H., D. S. Lee, D. Park and J. M. Park (2008). "Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process." Bioresource Technology 99(14): 6666-6672.
Juang, C.-P., L.-M. Whang and H.-H. Cheng (2011). "Evaluation of bioenergy recovery processes treating organic residues from ethanol fermentation process." Bioresource Technology 102(9): 5394-5399.
Kalia, V., S. Jain, A. Kumar and A. Joshi (1994). "Frementation of biowaste to H2 by Bacillus licheniformis." World journal of Microbiology and Biotechnology 10(2): 224-227.
Kandler, O. (1983). "Carbohydrate metabolism in lactic acid bacteria." Antonie van Leeuwenhoek 49(3): 209-224.
Kashket, E. R. (1982). "Stoichiometry of the proton-ATPase of growing and resting, aerobic Escherichia coli." Biochemistry 21(22): 5534-5538.
Kataoka, N., A. Miya and K. Kiriyama (1997). "Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria." Water Science and Technology 36(6): 41-47.
Kell, D., M. Peck, G. Rodger and J. Morris (1981). "On the permeability to weak acids and bases of the cytoplasmic membrane of Clostridiumpasteurianum." Biochemical and biophysical research communications 99(1): 81-88.
Khanal, S. K., W.-H. Chen, L. Li and S. Sung (2004). "Biological hydrogen production: effects of pH and intermediate products." International Journal of Hydrogen Energy 29(11): 1123-1131.
Kim, D.-H., S.-K. Han, S.-H. Kim and H.-S. Shin (2006). "Effect of gas sparging on continuous fermentative hydrogen production." International Journal of Hydrogen Energy 31(15): 2158-2169.
Kim, S.-H., S.-K. Han and H.-S. Shin (2006). "Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter." Process Biochemistry 41(1): 199-207.
Kovarik, B. (1982). Fuel alcohol: energy and environment in a hungry world, International Institute for Environment and Development.
Kraemer, J. T. and D. M. Bagley (2008). "Measurement of H2 consumption and its role in continuous fermentative hydrogen production." Water science and technology: a journal of the International Association on Water Pollution Research 57(5): 681.
Kraemer, J. T. and D. M. Bagley (2008). "Optimisation and design of nitrogen-sparged fermentative hydrogen production bioreactors." International Journal of Hydrogen Energy 33(22): 6558-6565.
Krulwich, T. A. and A. A. Guffanti (1983). "Physiology of acidophilic and alkalophilic bacteria." Adv Microb Physiol 24: 173-214.
Kyazze, G., R. Dinsdale, A. Guwy, F. Hawkes, G. Premier and D. Hawkes (2007). "Performance characteristics of a two‐stage dark fermentative system producing hydrogen and methane continuously." Biotechnology and bioengineering 97(4): 759-770.
Kyazze, G., N. Martinez‐Perez, R. Dinsdale, G. Premier, F. Hawkes, A. J. Guwy and D. Hawkes (2006). "Influence of substrate concentration on the stability and yield of continuous biohydrogen production." Biotechnology and bioengineering 93(5): 971-979.
Lalaurette, E., S. Thammannagowda, A. Mohagheghi, P.-C. Maness and B. E. Logan (2009). "Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis." international journal of hydrogen energy 34(15): 6201-6210.
Lambert, A. D., J. P. Smith and K. L. Dodds (1991). "Shelf life extension and microbiological safety of fresh meat—a review." Food Microbiology 8(4): 267-297.
Lay, J.-J., Y.-J. Lee and T. Noike (1999). "Feasibility of biological hydrogen production from organic fraction of municipal solid waste." Water Research 33(11): 2579-2586.
Lay, J. J. (2000). "Modeling and optimization of anaerobic digested sludge converting starch to hydrogen." Biotechnology and Bioengineering 68(3): 269-278.
Lay, J. J. (2001). "Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose." Biotechnology and bioengineering 74(4): 280-287.
Lee, H.-S., M. B. Salerno and B. E. Rittmann (2008). "Thermodynamic evaluation on H2 production in glucose fermentation." Environmental science & technology 42(7): 2401-2407.
Lee, H.-S., W. F. Vermaas and B. E. Rittmann (2010). "Biological hydrogen production: prospects and challenges." Trends in biotechnology 28(5): 262-271.
Lee, H. S., R. Krajmalinik‐Brown, H. Zhang and B. E. Rittmann (2009). "An electron‐flow model can predict complex redox reactions in mixed‐culture fermentative BioH2: Microbial ecology evidence." Biotechnology and bioengineering 104(4): 687-697.
Li, C. and H. H. Fang (2007). "Fermentative hydrogen production from wastewater and solid wastes by mixed cultures." Critical Reviews in Environmental Science and Technology 37(1): 1-39.
Li, S.-L., L.-M. Whang, Y.-C. Chao, Y.-H. Wang, Y.-F. Wang, C.-J. Hsiao, I. Tseng, M.-D. Bai and S.-S. Cheng (2010). "Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose–peptone and starch–peptone." International Journal of Hydrogen Energy 35(1): 61-70.
Limayem, A. and S. C. Ricke (2012). "Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects." Progress in Energy and Combustion Science.
Lin, C.-Y. and C.-H. Cheng (2006a). "Fermentative hydrogen production from xylose using anaerobic mixed microflora." International Journal of Hydrogen Energy 31(7): 832-840.
Lin, C.-Y., C.-C. Wu and C.-H. Hung (2008). "Temperature effects on fermentative hydrogen production from xylose using mixed anaerobic cultures." International Journal of Hydrogen Energy 33(1): 43-50.
Lin, P.-Y., L.-M. Whang, Y.-R. Wu, W.-J. Ren, C.-J. Hsiao, S.-L. Li and J.-S. Chang (2007). "Biological hydrogen production of the genus< i> Clostridium</i>: Metabolic study and mathematical model simulation." International Journal of Hydrogen Energy 32(12): 1728-1735.
Lin, Y. and S. Tanaka (2006b). "Ethanol fermentation from biomass resources: current state and prospects." Applied microbiology and biotechnology 69(6): 627-642.
Liu, D., D. Liu, R. J. Zeng and I. Angelidaki (2006). "Hydrogen and methane production from household solid waste in the two-stage fermentation process." Water Research 40(11): 2230-2236.
Liu, G. and J. Shen (2004). "Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria." Journal of bioscience and bioengineering 98(4): 251-256.
Liu, I., L.-M. Whang, W.-J. Ren and P.-Y. Lin (2011). "The effect of pH on the production of biohydrogen by clostridia: thermodynamic and metabolic considerations." International Journal of Hydrogen Energy 36(1): 439-449.
Logan, B. E., S.-E. Oh, I. S. Kim and S. Van Ginkel (2002). "Biological hydrogen production measured in batch anaerobic respirometers." Environmental science & technology 36(11): 2530-2535.
Lovitt, R., G. Shen and J. Zeikus (1988). "Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum." Journal of bacteriology 170(6): 2809-2815.
Luo, G., L. Xie, Q. Zhou and I. Angelidaki (2011). "Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process." Bioresource technology 102(18): 8700-8706.
Martinot, E. and J. L. Sawin (2011). "Renewables 2011, Global Status Report." Renewable Energy Policy Network for the 21st Century REN21 2011.
Massanet-Nicolau, J., A. Guwy, R. Dinsdale, G. Premier and S. Esteves (2010). "Production of hydrogen from sewage biosolids in a continuously fed bioreactor: effect of hydraulic retention time and sparging." International Journal of Hydrogen Energy 35(2): 469-478.
Matsumoto, M. and Y. Nishimura (2007). "Hydrogen production by fermentation using acetic acid and lactic acid." Journal of bioscience and bioengineering 103(3): 236-241.
Meher Kotay, S. and D. Das (2008). "Biohydrogen as a renewable energy resource—prospects and potentials." International Journal of Hydrogen Energy 33(1): 258-263.
Merlino, G., A. Rizzi, A. Schievano, A. Tenca, B. Scaglia, R. Oberti, F. Adani and D. Daffonchio (2013). "Microbial community structure and dynamics in two-stage< i> vs</i> single-stage thermophilic anaerobic digestion of mixed swine slurry and market bio-waste." Water research 47(6): 1983-1995.
Michel-Savin, D., R. Marchal and J. Vandecasteele (1990). "Butyrate production in continuous culture of Clostridium tyrobutyricum: effect of end-product inhibition." Applied Microbiology and Biotechnology 33(2): 127-131.
Momirlan, M. and T. N. Veziroglu (2005). "The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet." International Journal of Hydrogen Energy 30(7): 795-802.
Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Lee, M. Holtzapple and M. Ladisch (2005). "Features of promising technologies for pretreatment of lignocellulosic biomass." Bioresource technology 96(6): 673-686.
Muradov, N. Z. and T. N. Veziroğlu (2008). "“Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies." International Journal of Hydrogen Energy 33(23): 6804-6839.
Nasr, N., E. Elbeshbishy, H. Hafez, G. Nakhla and M. Hesham El Naggar (2012). "Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage." Bioresource technology 111: 122-126.
Nguyen, T.-A. D., S. J. Han, J. P. Kim, M. S. Kim and S. J. Sim (2010). "Hydrogen production of the hyperthermophilic eubacterium,< i> Thermotoga neapolitana</i> under N< sub> 2</sub> sparging condition." Bioresource technology 101(1): S38-S41.
Nochur, S. V., A. L. Demain and M. F. Roberts (1992). "Carbohydrate utilization by< i> Clostridium thermocellum</i>: Importance of internal pH in regulating growth." Enzyme and microbial technology 14(5): 338-349.
Oh, S.-E., S. Van Ginkel and B. E. Logan (2003). "The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production." Environmental science & technology 37(22): 5186-5190.
Ohnishi, A., Y. Bando, N. Fujimoto and M. Suzuki (2010). "Development of a simple bio-hydrogen production system through dark fermentation by using unique microflora." International Journal of Hydrogen Energy 35(16): 8544-8553.
Padan, E., D. Zilberstein and H. Rottenberg (1976). "The proton electrochemical gradient in Escherichia coli cells." European Journal of Biochemistry 63(2): 533-541.
Pakarinen, O., H. Tähti and J. Rintala (2009). "One-stage H2 and CH4 and two-stage H2+ CH4 production from grass silage and from solid and liquid fractions of NaOH pre-treated grass silage." Biomass and Bioenergy 33(10): 1419-1427.
Park, W., S. H. Hyun, S.-E. Oh, B. E. Logan and I. S. Kim (2005). "Removal of headspace CO2 increases biological hydrogen production." Environmental science & technology 39(12): 4416-4420.
Rachman, M., Y. Nakashimada, T. Kakizono and N. Nishio (1998). "Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor." Applied microbiology and biotechnology 49(4): 450-454.
Ragsdale, S. W. and E. Pierce (2008). "Acetogenesis and the Wood–Ljungdahl pathway of CO< sub> 2</sub> fixation." Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics 1784(12): 1873-1898.
Reith, J., R. H. Wijffels and H. Barten (2003). Bio-methane and bio-hydrogen: status and perspectives of biological methane and hydrogen production, Dutch Biological Hydrogen Foundation.
Rittmann, B. E. (2008). "Opportunities for renewable bioenergy using microorganisms." Biotechnology and bioengineering 100(2): 203-212.
Rittmann, B. E. and P. L. McCarty (2001). Environmental biotechnology, McGraw-Hill New York.
Rodríguez, J., R. Kleerebezem, J. M. Lema and M. van Loosdrecht (2006). "Modeling product formation in anaerobic mixed culture fermentations." Biotechnology and bioengineering 93(3): 592-606.
Rosenthal, E. (2008). "Studies call biofuels a greenhouse threat." New York Times 8.
Schut, G. J. and M. W. W. Adams (2009). "The Iron-Hydrogenase of Thermotoga maritima Utilizes Ferredoxin and NADH Synergistically: a New Perspective on Anaerobic Hydrogen Production." Journal of Bacteriology 191(13): 4451-4457.
Schwartz, R. D. and F. A. Keller (1982). "Acetic acid production by Clostridium thermoaceticum in pH-controlled batch fermentations at acidic pH." Applied and Environmental Microbiology 43(6): 1385-1392.
Searchinger, T., R. Heimlich, R. A. Houghton, F. Dong, A. Elobeid, J. Fabiosa, S. Tokgoz, D. Hayes and T.-H. Yu (2008). "Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change." Science 319(5867): 1238-1240.
Shapouri, H., J. A. Duffield and M. Q. Wang (2002). The energy balance of corn ethanol: an update, United States Department of Agriculture, Economic Research Service.
Shizas, I. and D. Bagley (2005). "Fermentative hydrogen production in a system using anaerobic digester sludge without heat treatment as a biomass source." Water science and technology: a journal of the International Association on Water Pollution Research 52(1-2): 139.
Siriwongrungson, V., R. J. Zeng and I. Angelidaki (2007). "Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis." Water research 41(18): 4204-4210.
Speece, R. E. (1983). "Anaerobic biotechnology for industrial wastewater treatment." Environmental science & technology 17(9): 416A-427A.
Taguchi, F., N. Mizukami, T. Saito-Taki and K. Hasegawa (1995). "Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No. 2." Canadian journal of microbiology 41(6): 536-540.
Tanaka, K., A. Komiyama, K. Sonomoto, A. Ishizaki, S. Hall and P. Stanbury (2002). "Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1." Applied microbiology and biotechnology 60(1-2): 160-167.
Tanisho, S. and Y. Ishiwata (1994). "Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes." International journal of hydrogen energy 19(10): 807-812.
Tanisho, S., M. Kuromoto and N. Kadokura (1998). "Effect of CO2 removal on hydrogen production by fermentation." International Journal of Hydrogen Energy 23(7): 559-563.
Tao, Y., Y. Chen, Y. Wu, Y. He and Z. Zhou (2007). "High hydrogen yield from a two-step process of dark-and photo-fermentation of sucrose." International journal of hydrogen energy 32(2): 200-206.
Terracciano, J. S., W. J. Schreurs and E. R. Kashket (1987). "Membrane H+ conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: evidence for electrogenic Na+/H+ antiport in Clostridium thermoaceticum." Applied and environmental microbiology 53(4): 782-786.
Thauer, R. K., K. Jungermann and K. Decker (1977). "Energy conservation in chemotrophic anaerobic bacteria." Bacteriological reviews 41(1): 100.
Ueno, Y., H. Fukui and M. Goto (2007). "Operation of a two-stage fermentation process producing hydrogen and methane from organic waste." Environmental science & technology 41(4): 1413-1419.
Ueno, Y., S. Haruta, M. Ishii and Y. Igarashi (2001). "Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost." Applied Microbiology and Biotechnology 57(4): 555-562.
Van Andel, J., G. Zoutberg, P. Crabbendam and A. Breure (1985). "Glucose fermentation byClostridium butyricum grown under a self generated gas atmosphere in chemostat culture." Applied microbiology and biotechnology 23(1): 21-26.
Van Ginkel, S. and B. E. Logan (2005). "Inhibition of biohydrogen production by undissociated acetic and butyric acids." Environmental science & technology 39(23): 9351-9356.
Van Ginkel, S. W. and B. Logan (2005). "Increased biological hydrogen production with reduced organic loading." Water Research 39(16): 3819-3826.
Van Niel, E. W., P. A. Claassen and A. J. Stams (2003). "Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus." Biotechnology and bioengineering 81(3): 255-262.
Vasconcelos, I., L. Girbal and P. Soucaille (1994). "Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol." Journal of bacteriology 176(5): 1443-1450.
Wang, A., D. Sun, G. Cao, H. Wang, N. Ren, W.-M. Wu and B. E. Logan (2011). "Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell." Bioresource technology 102(5): 4137-4143.
Wang, G. and D. I. Wang (1984). "Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum." Applied and environmental microbiology 47(2): 294-298.
Whang, L.-M., C.-A. Lin, I. Liu, C.-W. Wu and H.-H. Cheng (2011). "Metabolic and energetic aspects of biohydrogen production of Clostridium tyrobutyricum : The effects of hydraulic retention time and peptone addition." Bioresource technology 102(18): 8378-8383.
Wieringa, K. (1936). "Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwaarden." Antonie van Leeuwenhoek 3(1): 263-273.
Wu, C.-W., L.-M. Whang, H.-H. Cheng and K.-C. Chan (2012). "Fermentative Biohydrogen Production FromLactate andAcetate." Bioresource technology.
Yokoi, H., T. Tokushige, J. Hirose, S. Hayashi and Y. Takasaki (1998). "H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes." Biotechnology Letters 20(2): 143-147.
Yoshida, A., T. Nishimura, H. Kawaguchi, M. Inui and H. Yukawa (2006). "Enhanced hydrogen production from glucose using ldh-and frd-inactivated Escherichia coli strains." Applied microbiology and biotechnology 73(1): 67-72.
Zhu, H., A. Stadnyk, M. Beland and P. Seto (2008). "Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process." Bioresource Technology 99(11): 5078-5084.
Zhu, J. and X. Pan (2010). "Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation." Bioresource technology 101(13): 4992-5002.
Zhu, Y. and S.-T. Yang (2004). "Effect of pH on metabolic pathway shift in fermentation of xylose by< i> Clostridium tyrobutyricum</i>." Journal of biotechnology 110(2): 143-157.
Zoetemeyer, R., A. Matthijsen, A. Cohen and C. Boelhouwer (1982). "Product inhibition in the acid forming stage of the anaerobic digestion process." Water Research 16(5): 633-639.
Zwietering, M., I. Jongenburger, F. Rombouts and K. Van't Riet (1990). "Modeling of the bacterial growth curve." Applied and environmental microbiology 56(6): 1875-1881.