簡易檢索 / 詳目顯示

研究生: 李佳峰
Lee, Chia-Fong
論文名稱: 應用溫度與壓力感測塗料於穿音速風洞實驗
The Application of Liquid Crystal and Pressure Sensitive Paint in Transonic Wind Tunnel Experiment
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 99
中文關鍵詞: 溫度感測塗料液晶壓力感測塗料
外文關鍵詞: PSP, TSP, Liquid Crystal
相關次數: 點閱:62下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的主要在於探討溫度與壓力感測塗料的特性,尋求改善傳統之表面溫度與壓力量測技術及建立風洞試驗上的技術。溫度與壓力量測為風洞試驗不可或缺的一個項目。對於模型表面靜壓量測而言,傳統方法是將表面壓力孔連接至壓力感測器量取平均壓力,或是將動態壓力感測器安裝在測試模型之表面量取壓力擾動,然而這些量測方法對比較複雜或尺寸較小之模型而言,均有空間解析度不足及量測不易的問題。量測模型表面的溫度亦有相同的問題, 傳統方法是埋設熱電偶
    (Thermocouple)於模型表面中,利用溫度所造成的電壓差變化來量取表面溫度,但仍會受限於只能單點量測及模型尺寸形狀的限制。而溫度與壓力感測塗料是利用液晶分子與螢光抑制效應為基礎的量測技術,已經發展到能夠測量風洞模型表面溫度與壓力分佈情況。
    本研究將著重於兩部分:(一)溫度與壓力感測塗料之特性研究及改良,並做定性與定量的分析。(二)應用感測塗料於穿音速風洞,建立完整量測設備及校驗能量,以便未來能應用於彈體模型表面溫度與壓力變化分佈之量測,進一步瞭解彈體表面空氣動力流場特性分析。
    本研究成果將有助於建立國內在溫度與壓力感測塗料之發展,建立風洞測試之能量,並可推廣至其他相關之溫度與壓力量測。

    The purpose of this study is to develop the measurement techniquesusing pressure sensitive paint (PSP) and liquid crystal for transonic wind
    tunnel experiment. Acquiring temperature and pressure distribution of modelsurface is very important for studying the flow phenomena associated with theaerodynamic performance of the model. Traditional temperature and pressure
    measurements are taken with temperature sensors and pressure taps embedded in the model surface. Temperature and pressure taps do not give good spatial resolution due to the need for individual sensors. If the shape of the model is
    too small or complicated in geometry, it will limit the quantity of the sensors.Also, making a model can be very expensive if installation of a large amount of taps or sensors has to be considered. Using PSP and liquid crystal
    techniques, one can acquire temperature and pressure distributions,respectively, with high spatial resolution and simple model preparation.
    This research includes two parts. (1) Develop the PSP technique with the qualitative and quantitative analysis, and apply the technique in transonic wind tunnel experiment, with the aim to investigate the phenomena of flow
    around an ogive body at angles of attack. (2) Apply the liquid crystal technique in the transonic wind tunnel experiments, for studying the surface patterns concerning a finite cylinder on a flat plate and an ogive body.
    Attempts are made to reduce the temperature distributions from the obtained liquid crystal images.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XIII 第一章緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 壓力感測塗料文獻回顧 2 1.2.2 溫度感測塗料文獻回顧 3 第二章理論基礎 4 2.1 壓力感測塗料理論基礎 4 2.1.1 螢光分子與黏著劑的特性 4 2.1.2 量測方式 5 2.2 溫度感測塗料理論基礎 6 2.2.1 液晶的特性 6 2.2.2 量測方式 7 第三章實驗設備與模型 9 3.1 壓力感測塗料設備 9 3.1.1 壓力感測塗料的調配材料 9 3.1.2 壓力感測塗料校驗設備 10 3.1.3 壓力感測塗料塗層厚度分析之校驗設備 12 3.1.4 平板噴流之校驗設備 13 3.1.5 壓力感測塗料在低溫下之定性分析儀器設備 13 3.1.6 激發光強弱影響之校驗設備 13 3.2 溫度感測塗料設備 14 3.2.1 溫度感測塗料的調配材料 14 3.2.2 溫度感測塗料校驗設備 14 3.2.3 穿音速風洞平板模型 14 3.2.4 穿音速風洞彈體模型 15 第四章實驗方法與步驟 17 4.1 壓力感測塗料實驗方法 17 4.1.1 壓力感測塗料性質分析 17 4.1.2 壓力感測塗料調配方式 17 4.1.3 壓力感測塗料之校驗方式 18 4.1.4 壓力感測塗料塗層厚度分析實驗方式 18 4.1.5 平板噴流之校驗方式 19 4.1.6 壓力感測塗料在低溫下之分析 20 4.1.7 激發光強弱影響之校驗方式 20 4.2 溫度感測塗料實驗方法 20 4.2.1 溫度感測塗料調配方式 20 4.2.2 溫度感測塗料之校驗方式 21 4.2.3 溫度感測塗料於穿音速風洞測試 22 4.2.4 彈體表面油流觀察 25 第五章實驗結果與討論 27 5.1 壓力感測塗料實驗結果 27 5.1.1 壓力感測塗料定量校驗結果 27 5.1.2 壓力感測塗料塗層厚度分析結果 28 5.1.3 平板噴流之校驗結果 29 5.1.4 壓力感測塗料在低溫下之分析結果 30 5.1.5 激發光強弱影響之試驗結果 30 5.2 溫度感測塗料定量校驗結果 31 5.3 溫度感測塗料於穿音速風洞吹試結果 33 5.3.1 平板模型吹試結果 33 5.3.2 彈體模型吹試結果 35 5.4 噴流表面油流分析 38 第六章結論與建議 40 6.1 結論 40 6.2 未來工作與建議 41 參考文獻 43

    [1] Liu, T., Campbell, B. T., Burns, S. P., and Sullivan, J. P., “Temperature and pressure sensitive luminescent paints in aerodynamics.” Applied Mechanics Reviews, Vol. 50, No. 4, 1997, pp. 227-246
    [2] Peterson, J., Fitzgerald, V. F., “New technique of surface flow visualization based on oxygen quenching of fluorescence”, Rev Sci.Instrum, Vol. 51, No. 5, May 1980, pp. 670-671.
    [3] Morris, M. J. and Donovan, J. F., “Application of pressure and temperature sensitive paints to high speed flows”, 25th AIAA Fluid Dynamics Conference, 1994, AIAA 94-2231.
    [4] Oglesby D. M., Puram C. K., and Upchurch B.T., “Optimization of measurements with pressure sensitive paints”, NASA Technical Memorandum 4695, June 1995
    [5] Kavandi, J., Callis, J. B., Gouterman M. P., Khalil, G., Wright, D., Green, E., Burns, D., and McLachlan B., “Luminescent barometry in wind tunnels”, Rev. Sci. Instrum, 61(11) 1990, pp.3340-3347
    [6] Morris, M. J., Benne, M. E., Crites, R. C., and Donovan, J. F., “Aerodynamics measurements based on photoluminescence”, AIAA Paper 93-0175, 1993.
    [7] Morris, M. J., Donovan, J. F., Kegelman, J. T., Schwab S. D., Levy R. L., and Crites R. C., “Aerodynamic applications of pressure sensitive paint”, AIAA J. Vol. 31, No. 3, March, 1993, pp. 419-425
    [8] McLachlan, B. G., Bell, J. H., Gallery J., Gouterman, M., and Callis, H., “Boundary layer transition detection by luminescence imaging”, AIAA Paper 93-0177, 1993.
    [9] Bell, J. H. and McLachlan, B. G., “Image registration for luminescent paint sensors”, AIAA Paper 93-0178, 1993.
    [10] Dowgwillo, R., Morris, M. J., Donovan, J. F., and Benne. M. E., “Pressure sensitive paint in transonic wind tunnel testing of the F-15”, J. Aircraft, Vol. 33, No. 1, pp. 109-116, 1996.
    [11] Cattafesta, L. N., Liu, T., and Sullivan, J. P., “Uncertainty estimates for temperature-sensitive paint measurements with charge-coupled device cameras ”, AIAA J., Vol. 36, No. 11, pp. 2102-2108, 1998.
    [12] Liu, T., and Sullivan, J. P., “Application of temperature and pressure sensitive paints”, AGARDCP-601, Paper No. 29, 1998.
    [13] Carroll, B., Abbitt, J., Lukas, E., and Morries, M. J., “Step response of pressure sensitive paint”, AIAA J., Vol. 34, No. 3, pp. 521-526, 1996.
    [14] Sakamura, Y., Kido, Y., Suzuki, T., and Matsumoto, M., “Time-resolved pressure measurements in shock-induced flows using a pressure sensitive paint”, 23rd International Shock Wave Symposium, July 22-27, Fort Worth, USA, 2001.
    [15] Klein, E. J., “Liquid crystals in aerodynamic testing”, Astronautics and Aeronautics 1968; 6: 70-73.
    [16] Zharkova, G. M., “The application of liquid crystals in experimental aerodynamics”, Fluid mechanics-Soviet Research 1980; 9 (3 ):51-56.
    [17] Zharkova, G. M., “Visualisation of temperature fields by method of LC”, Experimental Heat Transfer 1991; ( 4 ): 85-94.
    [18] Jones, T., “Liquid Crystals in Aerodynamic and Heat Transfer Testing”, Int. Seminar on Optical Method and Data Processing in Heat and Fluid flow. Proc., London, 1992: 51-66.
    [19] Stasiec, J. and Collins, M. W., “Liquid Crystals thermography and image processing in heat and fluid flow experiments. Proc. of the Sixth Inter. Symp. on Flow Visualisation, Yokohama, Jup., 5-9 Oct.,1992 : 439-450.
    [20] Dovgal, A. V., Kozlov, V. V., Kovrizhina, V. N., and Zharkova, G. M., “Liquid-crystals visualization of the boundary layer in incompressible gas flow”, Flow Visualization VII. Proceed of the Seventh International Symposium on Flow Visualization, Seattle (Ed. Crowder, J. P.), Begell House, Inc., New York, 1995: 532-537.
    [21] Holmes, B. J., and Obara, C. J., “Advances in flow visualization using liquid crystal coating”, SAE paper 871017,1987.
    [22] Simonich, J. C., Moffat, R. J., “New technique for mapping heat transfer coefficient contours”, Rev. Sci. Instrum. 1982; 53(5):678-683.
    [23] Akino, N., Kunugi, T., Ueda, M., and Kurosawa, A., “A study on thermo-camera using Liquid Crystals (Method of multiple regression between colour and temperature)” Nat. Heat Transfer Conf.: Heat Transfer Measurement, Analysis and Flow Visualisation, 1989, 112:115-122.
    [24] Wang, Z., Ireland, P. T., and Jones, T. F., “Color image processing system for transient liquid crystal heat transfer experiments”, ASME 94-GT-290, 1994.
    [25] 松本正一, 角田市良, 劉瑞祥, “液晶之基礎與應用”, 國立編譯館出版, pp.3~pp.51, 1996.
    [26] Reinhard, K., Karsten S., and Andreas K., “Computer vision three-dimensional data from images” Springer, pp.12~pp.18, 1998.
    [27] 丁勝懋, “雷射工程導論”, 中央圖書出版社, p.34, 1995.
    [28] 洪惠雯, “以雷射激發火焰原子螢光之方法探討金屬元素之偵測極限值”, 國立成功大學化學研究所碩士論文, 1999.
    [29] 葉俊賢,國立成功大學航太中心穿音速風洞校驗,國立成功大學航空太空研究所碩士論文,1994.
    [30] Chung, K. M., Miau, J. J. and Yeh, J. S., “Development and calibration of ASTRC/NCKU transonic wind tunnel,” NSC 83-0424-E006-141T Report, 1994.
    [31] FLUIDYNE Engineering corporation “IAA/NCKU Transonic WIND TUNNEL AERO OPERATIONS MANUAL,” 5900 Olson Memorial Highway Minneapolis, MN 55422-49999, FluiDyne Job 1681, January 1993.
    [32] Maltby, R. L., “Flow visualization in wind tunnels using indicators,” AGARDograph 70, Apr. 1962.
    [33] 周宏聲, “穿音速高攻角彈體視流之研究, 國立成功大學航空太空研 究所碩士論文”, 2000.
    [34] Warsi, Z. U. A., “Theoretical and computational approaches,” Fluid Dynamics, Department of Aerospace Engineering, Mississippi State University 1992. ISBN 0-8493-4436-0.
    [35] 張國治, “穿音速機翼空氣動力特性之風洞實驗研究”, 國立成功大學航空太空研究所碩士論文, 1995.
    [36] Hunt, J. C. R., Abell, C. J., Peterka, J. A. and Woo, H., “Kinematical studies of the flows around free or surface mounted obstacles; applying topology to flow visualization,” Journal of Fluid Mechanics, Vol. 86, Part1, 1978, pp.179-200.
    [37] Squire, L. C., “The motion of a thin oil sheet under the steady boundary layer on a body,” Journal of Fluid Mechanics, Vol. 11, 1961, pp.15-26.
    [38] Figliola, R. S. and Beasley, D. E., “Theory and design for mechanical measurements”, John Wiley & Sons, Inc, 1995.
    [39] Rainbird, W. J., Crabbe, R. S. and Jurewicz, L. S., “A water tunnel investigation of the flow separation about circular cones at incident,” NRC-AERO collection, 1963.
    [40] 林志華, “穿音速體側向噴流之空氣動力試驗研究”, 國立成功大學航空太空研究所碩士論文, 2001.
    [41] 邱文彬, “高攻角彈體側向噴流之油流與壓力試驗研究”, 國立成功大學航空太空研究所碩士論文, 2000.

    下載圖示 校內:立即公開
    校外:2002-08-06公開
    QR CODE