簡易檢索 / 詳目顯示

研究生: 何奕宏
Ho, Yi-Hung
論文名稱: 腰椎減壓微創手術之生物力學評估
Biomechanical Evaluation for Minimally Invasive Lumbar Decompression
指導教授: 張志涵
Chang, Chih-Han
學位類別: 博士
Doctor
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 67
中文關鍵詞: 椎管狹窄症椎板開孔術椎板切除術
外文關鍵詞: Spinal Stenosis, Laminotomy, Laminectomies
相關次數: 點閱:101下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單雙側椎板開孔術及椎板切除術目前已普遍應用在腰椎椎管狹窄症候群(Spinal stenosis syndrome)的減壓處理,且已都有良好的減壓效果及手術成功率。近年來,微創手術因為傷口小及術後復原快,單側椎板開孔術應用在腰椎雙邊減壓的方法漸漸盛行,但手術難度較高且繁雜。而在過去的研究顯示,單側的椎板開孔術比雙側的椎板開孔術有較多的併發症產生,如硬膜下出血及撕裂。特別是目前針對單雙側椎板開孔術的部分,目前並沒有相關的生物力學分析。因此,本研究目的為比較不同減壓手術後對於脊椎穩定度的影響,並進一步比較其生物力學特性,以找出符合臨床狀況且能保持力學穩定度之減壓手術型態,做為臨床醫師手術參考之依據。
    本研究的第一部份為使用十隻豬腰椎進行體外實驗,模擬三種不同手術型態,每個樣本(L2-L5)會測試包含手術前、單側椎板開孔術、雙側椎板開孔術及椎板切除術共四種不同狀況,配合材料試驗機及自行設計之動作治具模擬腰椎彎曲及伸展的動作,輔以動作分析系統及應變規探討椎間活動度及椎體的應變狀況,以做為脊椎穩定度評估之指標。
    結果顯示單側和雙側椎板開孔術在腰椎彎曲及伸展的模擬動作下,椎間活動度(L3-L4 及 L4-L5)並無顯著差異,椎板切除術則與其他三組都有顯著差異;在椎體應變量的分析也有同樣的趨勢,單側和雙側椎板開孔術並無顯著差異。
    為進一步探討更多的生物力學參數及控制人與豬腰椎的差異,本研究的第二部分為根據一成人腰椎影像建立有限元素模型,共分成手術前、單側椎板開孔術、雙側椎板開孔術及椎板切除術共四種狀況模擬腰椎彎曲、伸展、側彎及旋轉,結果顯示單雙側椎板開孔術無論在椎間活動度、椎體等效應力及小面關節應力的表現上大致相同,進一步發現後縱韌帶在腰椎彎曲及前縱韌帶在腰椎伸展的張力在雙側椎板開孔術會比單側大,彎曲前後分別是211N及230N,伸展前後分別是338N及365N,證明脊椎韌帶可能會因為微小結構的變化而保留活動度,由此可知若患者的韌帶之功能完整,臨床上可建議實行雙測椎板開孔術。
    總結以上結果發現,椎板開孔術比椎板切除術有較好的術後穩定性,在單側及雙側的椎板開孔術則並無發現有顯著的穩定度差異。以生物力學的觀點來看,雙側椎板開孔術在術後初期可與單側椎板開孔術保留相同的脊椎穩定性。

    Unilateral laminotomy, bilateral laminotomies, and laminectomy have been widely used for managing spinal stenosis syndrome and all were successful decompression methods. In recent years, minimally-invasive concepts have been becoming more popular due to the shorter recovery time and involve removal of smaller amounts of important structures. Unilateral laminotomy was one of the minimally invasive decompression surgeries. Hence, it rated technically much more demanding than bilateral laminotomies and linked with more perioperative complications, such as dural hematoma and dural tear. However, no complete kinematic data and relative biomechanical analysis for evaluating spinal instability treated with unilateral and bilateral laminotomies. Therefore, the purpose of this study was to compare the stability of various decompression methods and to analyze the biomechanical characteristic. This study was expected to provide the selection for surgeon to decide what the decompressions methods should involve.
    The first part of this study involved using 10 porcine lumbar spines in vitro to simulate three decompression surgeries. Intact, unilateral laminotomies, bilateral laminotomies, and laminectomies were tested using a mechanical testing machine and self-design jigs for each sample (L2–L5). During flexion and extension, the spinal segment kinematics was captured using a motion tracking system, and the strain was measured using a strain gauge.
    The results indicated no significant differences in range of motion (L3–L4 and L4–L5) during flexion and extension between unilateral and bilateral laminotomies, whereas statistically significant findings were observed for laminectomies. The results for vertebral body strain were the same as those for range of motion, with no significant differences between unilateral and bilateral laminotomies.
    To further explore the biomechanical differences between the human and porcine lumbar spine, the second part of this study entailed constructing a finite element model to analyze flexion, extension, lateral bending, and axial rotation. The model was used to simulate unilateral and bilateral laminotomies, and laminectomies at L3–-L4 and L4–L5. Similar stabilities in range of motion, posterior element stress, and facet contact force were observed between unilateral and bilateral laminotomies. This study found that the posterior longitudinal ligament during flexion and the anterior longitudinal ligament during extension were more active in bilateral than unilateral approaches (211 N vs. 230 N after flexion and 338 N vs. 365 N after extension). This study determined that the lumbar ligaments preserved the lumbar motion after the structures were modified. If the ligaments’ function of patients were normal, the bilateral laminotomies were suitable applied.
    In summary, greater spinal stability was found for laminotomies compared with laminectomies, with no significant differences between bilateral and unilateral laminotomies. From the biomechanical perspective, bilateral laminotomies seem to maintain stability similar to that of unilateral laminotomies in short-term follow-ups.

    中文摘要 I Abstract III 誌謝 V Contents VII List of Figures X List of Tables XII Chapter 1. General Introduction 1 1.1 Problem descriptions 1 1.2 Overviews of spinal stenosis 2 1.3 Surgical decompression methods 3 1.3.1 Introduction of minimally invasive surgery 3 1.3.2 Introduction of Laminotomy 4 1.3.3 Introduction of Laminectomy 5 1.3.4 Procedural complications 6 1.4 Literature Reviews 8 1.4.1 Overview of lumbar spinal stenosis 8 1.4.2 Clinical outcomes for lumbar decompression 10 1.4.3 Biomechanical study for lumbar decompression 12 1.5 Motivation and Objectives 17 1.6 Scope of the present study 18 Chapter 2. Materials and Methods 19 2.1 Experimental test 19 2.1.1 Uniquely designed motion simulator 19 2.1.2 Specimens preparation 21 2.1.3 Three-Dimensional motion capture system 23 2.1.4 Test protocols 24 2.1.5 Data analysis and statistics 25 2.2 FEM simulation 26 2.2.1 Finite Element modeling 26 2.2.2 Material properties 28 2.2.3 Boundary conditions and comparison index 30 2.2.4 Convergence test 31 2.2.5 Rationalities of models 31 Chapter 3. Results 33 3.1 Experimental study 33 3.1.1 Total ROM of experimental study 33 3.1.2 ROM at surgical incision of experimental study 34 3.1.3 Strain on the vertebral Body of experimental study 36 3.2 FEM simulation 38 3.2.1 Total ROM of FEM simulation 38 3.2.2 ROM at surgical incision of FEM simulation 40 3.2.3 Posterior elements stress of FEM simulation 44 3.2.4 Facet contact force 46 Chapter 4. Discussions 47 4.1 The ROM in various decompression surgeries 47 4.2 Strain in the various decompression surgeries of experiment 49 4.3 Posterior elements stress of FEM 50 4.4 Facet contact force of FEM 51 4.5 Ligaments effect investigated during simulation 52 4.6 Limitations 57 Chapter 5. Conclusions 58 Chapter 6. Future work 59 References 60 Appendix : ROM comparison between experiment and FEM 66

    Amundsen T, Weber H, Lilleas F, Nordal HJ, Abdelnoor M, Magnaes, B. (1995). Lumbar spinal stenosis. Clinical and radiologic features. Spine 20(10), 1178-1186.

    Assaker R. (2004). Minimal access spinal technologies: state-of-the-art, indications, and techniques. Joint Bone Spine 71(6), 459-69.

    Atlas SJ, Deyo RA. (2001). Evaluating and Managing Acute Low Back Pain in the Primary Care Setting. J Gen Intern Med 16, 120–131.

    Bisschop A, van Engelen SJ, Kingma I, Holewijn RM, Stadhouder A, van der Veen AJ, van Dieën JH, van Royen BJ. (2014). Single level lumbar laminectomy alters segmental biomechanical behavior without affecting adjacent segments. Clin Biomech 29, 912-917.

    Bresnahan L, Ogden AT, Natarajan RN, Fessler RG. (2009). A Biomechanical Evaluation of Graded Posterior Element Removal for Treatment of Lumbar Stenosis: Comparison of a Minimally Invasive Approach With Two Standard Laminectomy Techniques. Spine 34, 17-23.

    Busscher I, Ploegmakers JJ, Verkerke GJ, Veldhuizen, AG. (2010). Comparative anatomical dimensions of the complete human and porcine spine. Eur Spine J 19, 1104–1114.

    Cai X, He X, Li H, Wang D. (2013). Biomechanical evaluation of the Total Atlanto-odontoid Joint Arthroplasty System: an in vitro human cadaveric study. Clin Biomech 28, 357-363.

    Cavusoglu H, Kaya RA, Türkmenoglu ON, Tuncer C, Colak I, Aydin Y. (2007). Midterm outcome after unilateral approach for bilateral decompression of lumbar spinal stenosis: 5-year prospective study. Eur Spine J 16, 2133-2142.

    Chen CS, Cheng CK, Liu CL, Lo WH. (2001). Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phys 23 (7), 483-491.

    Cluett, J. Spinal Stenosis - How is Spinal Stenosis Diagnosed? (2010). http://orthopedics.about.com/cs/spinalstenosis/a/spinalstenosis_2.htm. Retrieved 2015/9.

    Dahdaleh NS, Nixon AT, Lawton CD, Wong AP, Smith ZA. (2013). Outcome following unilateral versus bilateral instrumentation in patients undergoing minimally invasive transforaminal lumbar interbody fusion: a single center randomized prospective study. Neuro Surg Focus 35, E13.

    Delank KS, Delank HW, König DP, Popken F, Fürderer S. (2005). Iatrogenic paraplegia in spinal surgery. Arch Orthop Trauma Surgery 125, 33-41.

    Deyo RA, Gray DT, Kreuter W, Mirza S, Martin BI. (2005). United States Trends in Lumbar Fusion Surgery for Degenerative Conditions. Spine 30, 1441-1445.

    Ekman P, Möller H, Shalabi A, Yu YX, Hedlund R. (2009). A prospective randomised study on the long-term effect of lumbar fusion on adjacent disc degeneration. Eur Spine J 18, 1175-1186.

    Fu YS, Zeng BF, Xu JG. (2008). Long-term outcomes of two different decompressive techniques for lumbar spinal stenosis. Spine (Phila Pa 1976) 33, 514-518.

    Goel VK, Monroe BT, Gilbertson LG, Brinckmann P. (1995). Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3–L4 motion segment subjected to axial compressive loads. Spine (Phila Pa 1976) 20 (6), 689-698.

    Hamasaki T, Tanaka N, Kim J, Okada M, Ochi M, Hutton WC. (2009). Biomechanical Assessment of Minimally Invasive Decompression for Lumbar Spinal Canal Stenosis: A Cadaver Study. J Spinal Disord Tech. 22, 486-491.

    Ho YH, Tu YK, Hsiao CK, Chang CH. (2015). Outcomes after minimally invasive lumbar decompression: a biomechanical comparison of unilateral and bilateral laminotomies. BMC Musculoskelet Disord.16, 208.

    Hong SW, Choi KY, Ahn Y, Baek OK, Wang JC, Lee SH, Lee HY. (2011). A comparison of unilateral and bilateral laminotomies for decompression of L4-L5 spinal stenosis. Spine (Phila Pa 1976) 36, 172-178.

    Hopp E, Tsou PM. (1988). Postdecompression lumbar instability. Clin Orthop Relate Res 227, 143-151.

    Jallo J, Ernst FR, Minshall ME. (2009). The cost of cerebral spinal fluid leaks after spinal surgery in the USA. Congress of Neurological Surgeons.

    Jenis LG, An HS. (2000). Spine update. Lumbar foraminal stenosis. Spine (Phila Pa 1976) 25, 389-394..

    Katz JN, Lipson SJ, Larson MG, McInnes JM, Fossel AH, Liang MH. (1991). The outcome of decompressive laminectomy for degenerative lumbar stenosis. J. Bone Joint Surg.Am. 73(6), 809-816.

    Khoo LT, Fessler RG. (2002). Microendoscopic decompressive laminotomy for the treatment of lumbar stenosis. Neurosurgery. 51(5), S146-54.

    Kim HJ, Chun HJ, Kang KT, Lee HM, Chang BS, Lee CK, Yeom JS.(2015). Finite element analysis for comparison of spinous process osteotomies technique with conventional laminectomy as lumbar decompression procedure. Yonsei Med J. 56 (1), 146–153.

    Kim YH, Han KS, Kim K. (2013). Alteration of ligament stiffness can change the spine muscle coordination in flexed positions. ORS 2013 Annual Meeting in San Antonio, Texas.

    Lee KK, Teo EC, Fuss FK ,Vanneuville V, Qiu TX, Ng HW, Yang K, Sabitzer RJ. (2004). Finite element analysis for lumbar interbody fusion under axial loading. IEEE Trans Biomed Eng 51, 393–400.

    Lee MJ, Bransford RJ, Bellabarba C, Chapman JR, Cohen AM. (2010). The Effect of Bilateral laminotomies Versus Laminectomy on the Motion and Stiffness of the Human Lumbar Spine. Spine 35, 1789–1793.

    Luoma K., Riihimaki H., Raininko R., Luukkonen R., Lamminen A., Viikari-Juntura E. (1998). Lumbar disc degeneration in relation to occupation. Scand.J. Work Environ.Health 24(5), 358-366.

    NHS choice. Lumbar decompression surgery. (2013). http://www.nhs.uk/conditions/lumbardecompressivesurgery/Pages/Whatisitpage.aspx. Retrieved 2015/9.

    Oertel MF, Ryang YM, Korinth MC, Gilsbach JM, Rohde V. (2006). Long-term results of microsurgical treatment of lumbar spinal stenosis by unilateral laminotomy for bilateral decompression. Neurosurgery 59, 1264-1269.

    Ogden AT, Bresnahan L, Smith JS, Natarajan R, Fessler RG. (2009). Biomechanical comparison of traditional and minimally invasive intradural tumor exposures using finite element analysis. Clin Biomech 24, 143-147.

    Okawa A, Shinomiya K, Takakuda K, Nakai O. (1996). A cadaveric study on the stability of lumbar segment after partial laminotomy and facetectomy with intact posterior ligaments. J Spinal Disord 9, 518-526.

    Park WM, Kim K, Kim YH. (2013). Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Comput Biol Med. 43 (9), 1234-1240.

    Pyles CO, Zhang J, Demetropoulos CK, Bradfield CA, Ott KA, Armiger RS, Merkle AC. (2015). Material Parameter Determination of an L4-L5 Motion Segment Finite Element Model Under High Loading Rates. Biomed Sci Instrum 51, 206-213.

    Queesland Government. Lumbar Decompression Laminectomy. (2011).

    Rohlmann A, Zander T, Rao M, Bergmann G. (2009). Realistic loading conditions for upper body bending. J Biomech 42, 884-890.

    Saal JA, Saal JS. (2000). Intradiscal electrothermal treatment for chronic discogenic low back pain: a prospective outcome study with minimum 1-year follow-up. Spine 25(20), 2622-2627.

    Schonstrom N, Lindahl S, Willen J, Hansson T. (1989). Dynamic changes in the dimensions of the lumbar spinal canal: an experimental study in vitro. J Orthop.Res. 7(1), 115-121.

    Schwarzer AC, Aprill CN, Derby R, Fortin J, Kine G, Bogduk N. (1994). The relative contributions of the disc and zygapophyseal joint in chronic low back pain. Spine (Phila Pa 1976.) 19(7), 801-806.

    Sedacki K. (2011). Biomechanical comparision of traditional laminectomy and minimally-invasive facetectomies. Thesis Presented for University of Tennessee Health Science Center.

    Shah RR, Mohammed S, Saifuddin A, Taylor BA. (2003). Radiologic evaluation of adjacent superior segment facet joint violation following transpedicular instrumentation of the lumbar spine. Spine (Phila Pa 1976.) 28(3), 272-275.

    Shaw J. (2008). Incidental durotomy/dural tear. Presentation to Centers for Disease Control and Prevention. ICD-9-CM Coordination and Maintenance Committee.

    Sheehan JM, Shaffrey CI, Jane JA Sr. (2001). Degenerative lumbar stenosis: the neurosurgical perspective. Clin.Orthop.Relat Res. (384), 61-74.

    Sin AH, Caldito G, Smith D, Rashidi M, Willis B, Nanda A. (2006). Predictive factors for dural tear and cerebrospinal fluid leakage in patients undergoing lumbar surgery. J Neurosurg Spine. 5(3), 224-7.

    Song J, Park Y. (2000). Ligament-sparing lumbar microdiscectomy: technical note. Surg Neurol. 53(6), 592-596; discussion 596-7.

    SpinalStenosis.org. Spinal Stenosis. (2011). http://www.spinalstenosis.org/. Retrieved 2015/9.

    Steinbrück A, Woiczinski M, Weber P, Müller PE, Jansson V, Schröder C. (2014). Posterior cruciate ligament balancing in total knee arthroplasty: a numerical study with a dynamic force controlled knee model. Biomed Eng Online. 13, 91.

    Su J, Zhao W, Chen B, Li B, He S, Fang X. (2012). Biomechanical research on different pairs of lumbar laminectomy with finite element analysis. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 29 (3), 465–469.

    Tai CL, Hsieh PH, Chen WP, Chen LH, Chen WJ, Lai PL. (2008). Biomechanical comparison of lumbar spine instability between laminectomy and bilateral laminotomies for spinal stenosis syndrome - an experimental study in porcine model. BMC Musculoskelet Disord 9, 84.

    Tai CL, Chen LH, Lee DM, Liu MY, Lai PL. (2014). Biomechanical comparison of different combinations of hook and screw in one spine motion unit--an experiment in porcine model. BMC Musculoskelet Disord 15, 197.

    Teo EC, Lee KK, Qiu TX, Ng HW, Yang K. (2004). The biomechanics of lumbar graded facetectomy under anterior-shear load. IEEE Trans.Biomed.Eng 51(3), 443-449.

    Thome C, Zevgaridis D, Leheta O, Bazner H, Pockler-Schoniger C, Wöhrle J, Schmiedek P. (2005). Outcome after less-invasive decompression of lumbar spinal stenosis: a randomized comparison of unilateral laminotomy, bilateral laminotomies, and laminectomy. J Neurosurg Spine 3, 129–141.

    Wang H, Wang X, Chen W, Zhao F, Xiang L, Zhou Y, Cheng C. (2014). Biomechanical comparison of interspinous distraction device and facet screw fixation system on the motion of lumbar spine: a finite element analysis. Chin Med J (Engl) 127, 2078-2084.

    Weinstein JN, Lurie JD, Olson PR, Bronner KK, Fisher ES. (2006). United States' trends and regional variations in lumbar spine surgery: 1992-2003. Spine 31(23), 2707- 2714.

    White AA, Panjabi MM. (1990). Clinical biomechanics of the spine, 2nd ed. JB Lippincott, Philadelphia.

    Yang KH, King AI. (1984). Mechanism of facet load transmission as a hypothesis for low-back pain. Spine 9(6), 557-65.

    下載圖示 校內:2018-03-18公開
    校外:2018-03-18公開
    QR CODE