簡易檢索 / 詳目顯示

研究生: 沈茂霖
Shen, Mao-Lin
論文名稱: 不規則波與離岸潛沒結構物交互作用之模擬
Simulation of Irregular Waves and Their Interactions with Submerged Offshore Structures
指導教授: 黃清哲
Huang, Ching-Jer
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 220
中文關鍵詞: 轉換函數譜參數非線性黏性流次諧波底床剪應力偏度超諧波潛堤渦流砂漣環流渦流自動辨識不規則波
外文關鍵詞: Transfer function, Bed shear stress, Viscous flow, Irregular wave, Spectral property, Superharmonic, Subharmonic, Nonlinearity, Skewness, vortex circulation, Vortex auto-recognition, Vortex ripple, Submerged breakwater
相關次數: 點閱:114下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主旨為探討不規則波與離岸潛沒結構物之交互作用。藉由數值水槽中生成不規則波與求解非線性自由液面邊界條件下之二維時變Navier-Stokes方程,可獲得不規則波動下完整黏性流流況、底床剪應力與渦流環流。文中涵蓋四個主題:不規則波與其底床剪應力的線性與非線性特徵;潛堤週圍渦流的性質;渦流砂漣所引致的渦流特性。
    本研究中生成不規則波的方式,係採用快速傅立葉轉換架構下的定譜振幅模式決定成份波,再於黏性數值造波水槽中造出各波浪成份。以此數值造波結果與靶譜比對下,證實本模式可精準地生成所要求的不規則波波譜。線性條件下水位變化與底床剪應力間的轉換函數可由理論求得,其與數值結果的一致性可知本黏性流模式可準確無誤的模擬黏性流流況。此外,水位譜與其相對應之底床剪力譜分別以主頻、譜的零階動差和譜寬參數討論之。數值結果的底床剪應力最大值則與Myrhaug (1995)的模式進行比對。黏性水槽所求得的底床剪應力與採用轉換函數所求得的結果十分符合。
    為明瞭不規則波的非線性特徵,採用Dean and Sharma (1981)所推導的二階強制波模式─包含次諧波和超諧波─所合成的非線性不規則波進行初步探討。變化合成波中各成份波的相位,其波譜與偏度的空間變化都呈現出不規則的變動。數值模擬的不規則波在高非線性下,亦顯示出類似的現象。非線性條件下數值結果所求得的轉換函數與線性條件下的理論解比對,可發現非線性效應對轉換函數的影響不大。線性條件下的轉換函數仍可用於應床剪應力的推估。藉由數值結果,比較水位與底床剪應力的偏度空間變化,可發現兩者有一相位差,同時意謂著兩者的相位差在架構統計模式中不容忽視。
    由於數值模式可精準重複,本模式在沒有任何假設下便可以分離入射波與反射波。從反射係數的分析中,可決定出一段不受造波板處二次反射波浪影響的時段,並進行渦流分析。本文提出一渦流自動辨識系統,其中以渦度為判斷為基礎,且須決定一適切的渦度門壏值。本文中以流場和渦流場確認渦度門壏值能完整描述渦流的範圍。環流和所選取的渦流區域以流場與渦度場的方式呈現出不同時間點的差異。從渦流的交互作用中可以發現,生成於潛堤側的渦流受接續生成於潛堤上方渦流的影響,其的衰減率提升為原來的三倍。不規則波作用下,大波後跟隨小波時,大波所產生的渦流能持續較長的時間。
    運用邊界配適法,規則波與不規則波作用下與砂漣的互制分成平衡態和非平衡態的情況進行探討。在二倍砂漣高度以內的區域(砂漣邊界層),本數值模式模擬過渡段流況的結果與實驗有很好的一致性。前述的渦流自動辨識模式在此用以判斷砂漣上方形成的渦流特性。平衡態或非平衡態下,如果底床水粒子軌跡的振幅大於砂漣漣長,規則波下生成的環流強度因受限於漣長而有一最大值。渦流中心的運動軌跡也反應出類似的特性。不規則波下所生成的渦流數量與零上切所求得的波數並不一致,顯示並非任意大小的波動都能引致渦流的產生。

    This work presents the simulation of irregular waves interacting with submerged offshore structures. By generating the incident irregular waves in a numerical wave flume and solving the unsteady two-dimensional Navier-Stokes equations with the fully nonlinear free surface boundary conditions for the fluid flows in the flume, the viscous flows are determined and the bed shear stress as well as vortex circulation can be obtained. Four topics were focus: irregular waves with the associated bed shear stress were studied linearly and nonlinearly, vortex formed beneath irregular waves around a submerged breakwater and ripples.
    Irregular waves were generated by the wavemaker adopting deterministic spectral amplitude method implemented using the fast Fourier transform algorithm. The accuracy of the generated irregular waves and the viscous flows was confirmed by comparing the predicted wave spectrum with the target spectrum and by comparing the numerical transfer function between the shear stress and the surface elevation with the theoretical transfer function, respectively. Additionally, characteristics of the wave spectra and the associated shear stress spectra were discussed in terms of the spectral frequency, the zeroth spectral moment and the spectral bandwidth parameter. The maximum bottom shear stress caused by irregular waves, computed by this wave model, was compared with that obtained using Myrhaug’s model (1995). The transfer function method was also employed to determine the maximum shear stress, and was demonstrated to be accurate.
    Nonlinear properties of irregular waves are preliminary presented using the formula of the second-order bound waves, subharmonics and superharmonics, which deduced by Dean and Sharma (1981). As the associated phases changed, bound waves of the synthesized results show irregularity in spectrum and form randomness in spatial-varied skewness. Similar phenomena were found in the numerical results, although the magnitude of spectral higher harmonic components and the skewness are larger. The spatial-varied skewness of the surface elevation and the bed shear stress shows bound components indeed present, and indicate that the phase difference of surface elevation and bed shear stress has to be considered for building the associated statistical model.
    Of the repeatable properties of the present numerical scheme, the incident waves and reflected waves from the submerged breakwater were separated without any assumption. A reliable time duration for analysis was confirmed by the comparison of reflected coefficients in order to ensure that the wave reflected from wavemaker would not affect the interesting duration. A vorticity-based method with a vorticity threshold were developed and made the automatic recognition of vortex become possible, in which the threshold was confirmed for well describing the vortex region. Both the circulations and the selected vortex region were shown in flow fields and vorticity contours. The interaction of the vortices was evidenced and showed the succeed-formed vortices above breakwater increased the breakdown rate of the vortices next to the breakwater three times. Of the irregular-wave train, the vortex of large wave followed by small one lasted longer.
    Applying body-fitted boundary, different hydraulic conditions were studied about on and off equilibrium ripple pattern beneath regular and irregular waves. While concerning only the region beneath twice the ripple wave height, the present numerical scheme was verified with the experiment and has a good agreement within the transitional regime. The vortices formed beneath regular waves reached a limited circulation if the bed-orbital-displacement amplitude is larger than the ripple wavelength. The limitation can furthermore be evidenced by the trajectories of the vortex center. The vortices formed beneath irregular waves were recognized automatically as well, although the number of the zero-upcrossing waves and the vortices was not matched.

    Abstract V Abstract in Chinese VIII Contents XI Table Caption XIV Figure Caption XV List of Acronym XX List of Symbols XXII Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Linear irregular waves and the associated properties 2 1.3 Nonlinear properties beneath irregular waves 6 1.4 Interaction of irregular waves and a submerged breakwater 15 1.5 Vortex dynamics above rigid vortex ripples 21 1.6 Research Objectives 31 1.7 Layout and Contents of Dissertation 32 Chapter 2 Governing Equations and Boundary Conditions 35 2.1 Cartesian Coordinate System 35 2.2 Curvilinear Coordinate System 40 Chapter 3 Numerical Methods 45 3.1 Staggered grid system 45 3.2 Finite-analytic method 46 3.3 Solution algorithm 51 3.4 Free surface boundary 57 3.5 Numerical sponge layer 61 3.6 Calculating of shear stress 64 3.7 The solution procedure 65 Chapter 4 Linear irregular waves and the associated properties 67 4.1 Generation of irregular waves 68 4.2 Transfer function between shear stress and surface elevation 71 4.3 Relation between wave and shear stress spectra 74 4.4 Wavelet transform and effects of different spectral parameters 80 4.5 Determination of shear stresses using the transfer function method 84 4.6 Bed shear stress induced by irregular waves 88 4.7 Chapter remark 90 Chapter 5 Nonlinear properties beneath irregular waves 93 5.1 The properties of Dean and Sharma’s formula 93 5.2 Generation of irregular waves and the numerical conditions 101 5.3 Spectral properties 101 5.4 The properties of the transfer function 104 5.5 The statistical properties of the nonlinear bed shear stress 106 5.6 Skewness of surface elevation and bed shear stress 109 5.7 Chapter remark 110 Chapter 6 Interaction of irregular waves and a submerged breakwater 113 6.1 Numerical setup 113 6.2 Duration for study 118 6.3 Nonlinear properties 120 6.4 Properties of vortices around breakwater 122 6.5 Chapter remark 150 Chapter 7 Vortex dynamics above rigid vortex ripples 153 7.1 Dimensional analysis 153 7.2 Ripple form 159 7.3 Validation and numerical conditions 161 7.4 Vortex properties above ripples 164 7.5 Statistics results of vortex strength beneath irregular waves 175 7.6 Chapter remark 177 Chapter 8 Conclusions and Recommendations 179 8.1 Conclusions 179 8.2 Recommendations for Future Research 183 References 187 Index 207 Curriculum vitae (in Chinese) 219

    1. Admiraal, D., R. Musalem-Jara, M. Garcia, and Y. Nino (2006) “Vortex trajectory hysteresis above self-formed vortex ripples,” J. Hydraulic Res., Vol. 44, No. 4, pp. 437-450.
    2. Andersen, K. H. (1999), The Dynamics of Ripples Beneath Surface Waves and Topics in Shell Models of Turbulence, Ph.D. Dissertation, Niels Bohr Institute, University of Copenhagen, Denmark.
    3. Andersen, K. H., M. Abel, J. Krug, C. Ellegaard, L. R. Sondergaard, and J. Udesen (2002) “Pattern dynamics of vortex ripples in sand: Nonlinear modeling and experimental validation,” Phys. Rev. Letters, Vol. 88, No. 234302.
    4. Andersen, K. H., M.-L. Chabanol, and M. van Hecke (2001) “Dynamical models for sand ripples beneath surface waves,” Phys. Rev. E, Vol. 63, No. 066308.
    5. Ardhuin, F., T. G. Drake, and T. H. C. Herbers (2002) “Observations of wave-generated vortex ripples on the North Carolina continental shelf,” J. Geophysical Res., Vol. 107, No. C10, 3143.
    6. Bagnold, R. A. (1946) “Motion of wave in shallow water interaction between waves and sand bottoms,” Proc. R. Soc. London, A, Vol. 187, No. 1008, pp. 1-18.
    7. Baldock, T. E., C. Swan and P. H. Taylor (1996) “A laboratory study of nonlinear surface waves on water,” Philosphical Transactions of the Royal Society: Mathematical, Physical and Engineering Sciences, Vol. 354, pp. 649-676.
    8. Barrick, D. E. and B. L. Weber (1977) “On the nonlinear theory for gravity waves on the ocean surface. Part 2: Interpretation and applications,” J. Phys. Oceanography, Vol. 7, pp. 11-21.
    9. Becker, J. M., Y. L. Firing, J. Aucan, R. Holman, M. Merrifield, and G. Pawlak (2007) “Video-based observations of nearshore sand ripples,” J. Geophysical Res., Vol. 112, No. C01007, doi:10.1029/2005JC003451.
    10. Beji, S. and J. A. Battjes (1993) “Experimental investigation of wave propagation over a bar,” Coastal Eng., Vol. 19, pp. 151-162.
    11. Beji, S. and J. A. Battjes (1994) “Numerical simulation of nonlinear wave propagation over a bar,” Coastal Eng., Vol. 23, pp. 1-16.
    12. Benjamin, T. B. and J. E. Feir (1967) “The disintegration of wave trains on deep water, Part 1. Theory,” J. Fluid Mech., Vol. 27, No. 3, pp. 417-430.
    13. Benny, D. J. (1962) “Non-linear gravity wave interactions,” J. Fluid Mech., Vol. 14, pp. 577-584.
    14. Betat, A., V. Frette, and I. Rehberg (1999) “Sand ripples induced by water shear flow in an annular channel,” Phys. Rev. Letters, Vol. 83, No. 1, pp. 88-91.
    15. Blondeaux, P. (1990) “Sand ripples under sea waves Part 1. Ripple formation,” J. Fluid Mech., Vol. 218, pp. 1-17.
    16. Blondeaux, P. and G. Vittori (1991) “Vorticity dynamics in an oscillatory flow over a rippled bed,” J. Fluid Mech., Vol. 226, pp. 257-289.
    17. Blondeaux, P. and G. Vittori (1999) “Boundary layer and sediment dynamics under sea waves,” in: Liu, P. L.-F. (Ed.), Advances in Coastal and Ocean Engineering, Vol. 4, World Scientific, 133-190.
    18. Borgman, L. E. (1969) “Ocean wave simulation for engineering design,” J. Waterways and Harbor Div., ASCE, 95, 557-583.
    19. Cataño-Lopera, Y. A. and M. H. García (2006a), “Geometry and migration characteristics of bedforms under waves and current. Part 1: Sandwave morphodynamics,” Coastal Eng., Vol. 53, pp. 767-780.
    20. Cataño-Lopera, Y. A. and M. H. García (2006b), “Geometry and migration characteristics of bedforms under waves and current. Part 2: Ripples superimposed on sandwaves,” Coastal Eng., Vol. 53, pp. 781-792.
    21. Chang, H.-H. (2004) Interaction of Water Waves and Submerged Permeable Offshore Structures, Ph.D. Dissertation, Department of Hydraulics and Ocean Engineering, National Cheng Kung University, Taiwan (R.O.C.).
    22. Chang, K.-A., T.-J. Hsu, and P. L.-F. Liu (2001) “Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle: Part I. Solitary waves,” Coastal Eng., Vol. 44, No. 1, pp. 13-36.
    23. Chang, K.-A., T.-J. Hsu, and P. L.-F. Liu (2005) “Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle: Part II. Cnoidal waves,” Coastal Eng., Vol. 52, No. 3, pp. 13-36.
    24. Chang, Y. S. and A. Scotti (2004) “Modeling unsteady turbulent flows over ripples: Reynolds-averaged Navier-Stokes equations (RANS) versus large-eddy simulation (LES),” J. Geophysical Res., Vol. 109, C09012.
    25. Chan, R. K.-C. and R. L. Street (1970) “A computer study of finite-amplitude water waves,” J. Comput. Physics, Vol. 6, pp. 68-94.
    26. Chen, C.-J. and H.-C. Chen (1982) The finite-analytic method, IIHR Report 232-IV, Iowa Institute of Hydraulic Research, The University of Iowa, Iowa City.
    27. Chen, H.-C. and V. C. Patel (1987) “Laminar flow at the trailing edge of a flat plate,” AIAA J., Vol. 25, pp. 920-928.
    28. Cherneva, Z., P. Petrova, N. Andreeva, and C. G. Soares (2005) “Probability distributions of peaks, troughs and heights of wind waves measured in the black sea coastal zone,” Coastal Eng., Vol. 52, No. 7, pp. 599-615.
    29. Cieślikiewicz, W. and O. T. Gudmestad (1993) “Stochastic characteristics of orbital velocities of random water waves,” J. Fluid Mech., Vol. 255, pp. 275-299.
    30. Clément, A. (1996) “Coupling of two absorbing boundary conditions for 2d time-domain simulations of free surface gravity waves,” J. Comput. Phys., Vol. 126, pp. 139-151.
    31. Dattatri, J., H. Raman, and N. J. Shankar (1978) “Performance characteristics of submerged breakwaters,” Proc. 16th Int. Conf. Coastal Eng., ASCE, Hamburg, Germany, pp. 2153-2171.
    32. Davey, A. and K. Stewartson (1974) “On three-dimensional packets of surface waves,” Proc. R. Soc. Lond. A, Vol. 338, pp. 101-110.
    33. Davies, A. G. (1980) “Field observations of the threshold of sand motion in a transitional wave boundary layer” Coastal Eng., Vol. 4, pp. 23-46.
    34. Davis, J. P. (2005) A spectral approach to the transient analysis of wave-formed sediment ripples, Ph.D. Dissertation, School of Civil and Environmental Engineering, The University of Adelaide, Australia.
    35. Dawson, T. H. (2004) “Stokes correction for nonlinearity of wave crests in heavy seas,” J. Waterw., Port, Coast., Ocean Eng., ASCE, Vol. 130, No. 1, pp. 39-44.
    36. De Angelis, V., P. Lombardi, and S. Banerjee (1997) “Direct numerical simulation of turbulent flow over a wavy wall,” Phys. Fluids, Vol. 9, No. 8, pp. 2429-2442.
    37. Dean, R. G. and R. A. Dalrymple (1984) Water Wave Mechanics for Engineers and Scientists, Prentice-Hall, New Jersey.
    38. Dean, R. G. and J. N. Sharma (1981) “Simulation of wave systems due to nonlinear directional spectra,” Proc. Int. Symp. Hydrodynamics in Ocean Eng., Trondheim, Norway, Vol. 2, pp. 1211-1222.
    39. Dommermuth, D. G. and D. K. P. Yue (1987) “A high-order spectral method for the study of nonlinear gravity waves,” J. Fluid Mech., Vol. 184, pp. 267-288.
    40. Dong, C.-M. (2000) The Development of a Numerical Viscous Wave Flume and its Applications, Ph.D. Dissertation, Department of Hydraulics and Ocean Engineering, National Cheng Kung University, Taiwan (R.O.C.).
    41. Dong, C.-M. and C.-J. Huang (2004) “Generation and propagation of water waves in a two-dimensional numerical viscous wave flume,” J. Waterw., Port, Coast., Ocean Eng., ASCE, Vol. 130, pp. 143-153.
    42. Du Toit, C. G. and J. F. A. Sleath (1981) “Velocity measurements close to rippled beds in oscillating Flow,” J. Fluid Mech., Vol. 112, pp. 77-96.
    43. Duncan, P. E. and K. R. Drake (1995) “A note on the simulation and analysis of irregular non-linear waves,” Appl. Ocean Res., Vol. 17, No. 1, pp. 1-8.
    44. Dungey, J. C. and W. H. Hui (1979) “Nonlinear energy transfer in a narrow gravity-wave spectrum,” Proc. R. Soc. Lond. A, Vol. 368, No. 1733, pp. 239-265.
    45. Dysthe, K. B., K. Trulsen, H. E. Krogstad, and H. Socquet-Juglard (2003) “Evolution of a narrow-band spectrum of random surface gravirty waves,” J. Fluid Mech., Vol. 478, pp. 1-10.
    46. Earnshaw, H. C. and C. A. Greated (1998) “Dynamics of ripple bed vortices,” Experiments in Fluid, Vol. 25, pp. 265-275.
    47. Elgar, S., R. T. Guza, and R. J. Seymour (1985) “Wave group statistics from numerical simulations of a random sea,” Appl. Ocean Res., Vol. 7, pp. 93-96.
    48. Fredsøe, J., K. H. Andersen, and B. M. Sumer (1999) “Wave plus current over a ripple-covered bed,” Coastal Eng., Vol. 38, pp. 177-221.
    49. Fredsøe, J., B. M. Sumer, A. Kozakiewicz, L. H. C. Chua, and R. Deigaard (2003) “Effect of externally generated turbulence on wave boundary layer,” Coast. Eng., Vol. 49, pp. 155-183.
    50. Fryer, D. K., G. Gilbert, and M. J. Wilkie (1973) “A wave spectrum synthesizer,” J. Hydraul. Res., Vol. 11, pp. 193-204.
    51. Funke, E. R. and E. P. D. Mansard (1987) “A rationale for the use of deterministic approach to laboratory wave generation,” Proc. IAHR Seminar Wave Analysis and Generation in Laboratory Basins, Lausanne, pp. 153-195.
    52. Goda, Y. (1970) “Numerical experiments on wave statistics with spectral simulation,” Report of the Port and Harbour Research Institute, Vol. 9, pp. 3-57.
    53. Goda, Y. (1988) “Statistical variability of sea state parameters as a function of wave spectrum,” Coastal Eng. in Japan, Vol 31, pp. 39-52.
    54. Goda, Y. (2000) Random Seas and Design of Maritime Structures, Advances in Coastal and Ocean Engineering, Vol. 15, World Scientific, Singapore.
    55. Goda, Y. and Y. Suzuki (1976) “Estimation of incident and reflected waves in random wave experiments,” Proc. 15th Int. Conf. Coastal Eng., ASCE, Honolulu, pp. 828–845.
    56. Gramstad, O., and K. Trulsen (2007) “Influence of crest and group length on the occurrence of freak waves,” J. Fluid Mech., Vol. 582, pp. 463-472.
    57. Grant, W. D. and O. S. Madsen (1986) “The continental-shelf bottom boundary layer,” Annu. Rev. Fluid Mech., Vol. 18, pp. 265-305.
    58. Grasmeijer, B. T. and M. G. Kleinhans (2004) “Observed and predicted bed forms and their effect on suspended sand concentrations,” Coastal Eng., Vol. 51, pp. 351-371.
    59. Hanes, D. M., V. Alymov, and Y. S. Chang (2001) “Wave-formed sand ripples at Duck, North Carolina,” J. Geophysical Res., Vol. 106(C10), pp. 22575-22592.
    60. Hansen, J. L. (2001) Pattern Formation of Sand Ripples and Polygons in the Hydraulic Jump , Ph.D. Dissertation, Niels Bohr Institute, University of Copenhagen, Denmark.
    61. Hansen, J. L., M. van Hecke, C. Ellegaard, K. H. Andersen, T. Bohr, A. Haaning, and T. Sams (2001) “Stability balloon for two-dimensional vortex ripple patterns,” Phys. Rev. Letters, Vol. 87, No. 204301.
    62. Hara, T. and C.-C. Mei (1990) “Oscillating flows over periodic ripples,” J. Fluid Mech., Vol. 211, pp. 183-209.
    63. Hasselmann, K. (1962) “On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory,” J. Fluid. Mech., Vol. 12, pp. 481-500.
    64. Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Haselmann, P. Kruseman, A. Meerburg, P. Muller, D. J. Olbers, K. Richter, W. Sell, and H. Walden (1973) “Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP),” Ergnzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe (Deutsches Hydrogr. Zeit.), Vol. 12(A8), pp. 1-95.
    65. Hatori, M. (1984) “Nonlinear properties of laboratory wind waves at energy containing frequencies. Part 1. Probability density distribution of surface elevation,” J. of the Oceangraphical Society of Japan, Vol. 40, pp. 1-11.
    66. Holmedal, L. E., D. Myrhaug, and H. Rue (2000) “Seabed shear stresses under irregular waves plus current from Monte Carlo simulations of parameterized models,” Coastal Eng., Vol. 39, pp. 123-147.
    67. Holmedal, L. E., D. Myrhaug, and H. Rue (2003) “The sea bed boundary layer under random waves plus current,” Continental Shelf Res., Vol. 23, No. 7, pp. 717-750, 2003.
    68. Huang, N. E. and S. R. Long (1980) “An experimental study of the surface elevation probability distribution and statistics of wind-generated waves,” J. Fluid Mech., Vol. 101, pp. 179-200.
    69. Huang, N. E., S. R. Long, C. C. Tung, Y. Yuan, and L. F. Bliven (1983) “A non-Gaussian statistical model for surface elevation of nonlinear random wave fields,” J. Geophysical Res., No. 3C0795, pp. 7597-7606.
    70. Huang, N. E. and C.-C. Tung (1976) “The dispersion relation for a nonlinear random gravity wave field,” J. Fluid Mech., Vol. 75, No. 2, pp. 337-345.
    71. Huang, N. E. and C.-C. Tung (1977) “The influence of the directional energy distribution on the nonlinear dispersion relation in a random gravity wave field,” J. Phys. Oceanography, Vol. 7, No. 3, pp. 403-414.
    72. Huang, C.-J. and C.-M. Dong (1999) “Wave deformation and vortex generation in water waves propagating over a submerged dike,” Coastal Eng., Vol. 37, pp, 123-148.
    73. Huang, M.-C. (2002) “Wave parameters and functions in wavelet analysis,” Ocean Eng., Vol. 31, pp. 111-125.
    74. Hudson, J. D., L. Dykhno, and T. J. Hanratty (1996) “Turbulence production in flow over a wavy wall,” Experiments in Fluid, Vol. 20, pp. 257-265.
    75. Hughes, S. A. (1993) Physical models and laboratory techniques in coastal engineering, Chap. 7. Advances Series on Ocean Engineering, Vol. 7, World Scientific, Singapore.
    76. IAHR Working Group on Wave Generation and Analysis, (1989) “List of sea-state parameters,” J. Waterw., Port, Coast. Ocean Eng., ASCE, Vol. 115, pp. 793-808.
    77. Ikeda, S., K. Horikawa, H. Nakamura, and K. Noguchi (1991) “Oscillatory boundary layer over a sand ripple model,” Coastal Eng. In Japan, Vol. 34, pp. 15-29.
    78. Ikeda, S., S. Kizaki, S. Ishii, and S. Kuribayashi (1989) “Flow near sand ripples and dissipation of wave energy,” Coastal Eng. In Japan, Vol. 32, pp. 15-36.
    79. Ishida, A. and H. Takahashi (1981) “Numerical analysis of shallow water wave deformation in a constant depth region,” Coastal Eng. in Japan, Vol. 24, pp. 1-18.
    80. Janssen, P. A. E. M. (2003) “Nonlinear four-wave interactions and freak waves,” J. Phys. Oceanography, Vol. 33, No. 4, pp. 863-884.
    81. Jensen, B. L., B. M. Sumer, and J. Fredsøe (1989) “Turbulent oscillatory boundary layers at high Reynolds numbers,” J. Fluid Mech., Vol. 206, pp. 265-297.
    82. Jespersen, T. S., J. Q. Thomassen, A. Andersen, and T. Bohr (2004) “Vortex dynamics around a solid ripple in an oscillatory flow,” Eur. Phy. J. B, Vol. 38, pp. 127-138.
    83. Johnson, J. W., R. A. Fuchs and JR Morison (1951) “The damping action of submerged breakwaters,” Trans. of Amer. Geophy. Union, Vol. 32, No. 5, pp. 704-718.
    84. Jonsson, I. G. (1963) “Measurements in the turbulent wave boundary layer,” Proc. 10th Congress Inter. Ass. Hydraul. Res, London, Vol. 1, pp. 85-92.
    85. Jonsson, I. G. (1980) “A new approach to oscillatory rough turbulent boundary layers,” Ocean Eng., Vol. 7, pp. 109-152.
    86. Jonsson, I. G. and N. A. Carlsen (1976) “Experimental and theoretical investigations in an oscillatory turbulent boundary layer,” J. Hydraul. Res., Vol. 14, pp. 45-60.
    87. Justesen, P. (1988) “Prediction of turbulent oscillatory flow over rough beds,” Coastal Eng., Vol. 12, pp. 257-284.
    88. Kamphuis, J. W. (1975) “Friction factor under oscillatory waves,” J. Waterw., Harbor and Coast. Div., ASCE, Vol. 101, pp. 135-144.
    89. Kaneko, A. and H. Honji (1979) “Double structures of steady streaming in the oscillatory viscous flow over a wavy wall,” J. Fluid Mech., Vol. 93, No. 4, pp. 727-736.
    90. Khelifa, A., and Y. Ouellet (2000) “Prediction of sand ripple geometry under waves and currents,” J. Waterw., Port, Coast., Ocean Eng., ASCE, Vol. 126, No. 1, pp. 14-22.
    91. Kim, H. (2004) “Effective Form Roughness of Ripples for Waves,” J. Coast. Res., Vol. 20, pp. 731-738
    92. Kinsman, B. (1965) Wind waves: their generation and propagation on the ocean surface, Prentice-Hall.
    93. Kojima, H., T. Ijima, and A. Yoshida (1990) “Decomposition and interception of long waves by a submerged horizontal plate” 22nd Coastal Eng. Conf., Delft, ASCE, New York, pp. 1228-1241.
    94. Klopman, G. and P. J. Von Leeuwen (1990) “An efficient method for the reproduction of non-linear random waves,” Proc. 22nd Int. Conf. Coastal Eng., ASCE, Delft, The Netherlands, Vol. 1, pp. 478-488.
    95. Kolář, V. (2007) “Vortex identification: New requirements and limitations,” International Journal of Heat and Fluid Flow, Vol. 28, No. 4, pp. 638-652.
    96. Lacy, J. R., D. M. Rubin, H. Ikeda, K. Mokudai, and D. M. Hanes (2007) “Bed forms created by simulated waves and currents in a large flume,” J. Geophysical Res., Vol. 112, C10018, doi:10.1029/2006JC003942.
    97. Lambrakos, K. F. (1982) “Seabed wave boundary layer measurements and analysis,” J. Geophysical Res., Vol. 87(C6), pp. 4171-4189.
    98. Laing, A. K. (1986) “Nonlinear properties of random gravity waves in water of finite depth,” Journal of Physical Oceanography, Vol. 16, pp. 2013-2030.
    99. Landry, B. J., M. J. Hancock, and C.-C. Mei, (2007), “Note on sediment sorting in a sandy bed unter standing water waves,” Coastal Eng., Vol. 54, pp. 694-699.
    100. Lin, C.-Y. and C.-J. Huang (2004) “Decomposition of incident and reflected higher harmonic wavesusing four wave gauges,” Coastal Eng., Vol. 51, No. 5, pp. 395-406.
    101. Longiet-Higgins, M. S. (1962) “Resonant interactions between two trains of gravity waves,” J. Fluid Mech., Vol. 12, No. 3, pp. 321-332.
    102. Longuet-Higgins, M. S. (1963) “The effect of nonlinearities on statistical distribution in the theory of sea waves,” J. Fluid Mech., Vol. 17, pp. 459-480.
    103. Longiet-Higgins, M. S. (1976) “On the nonlinear transfer of energy in the peak of a gravity-wave spectrum: a simplified model,” Proc. R. Soc. Lond. A: Mathematical and Physical Sciences, Vol. 347, No. 1650, pp. 311-328.
    104. Longuet-Higgins, M. S. and O. M. Phillips (1962) “Phase velocity effects in tertiary wave interactions,” J. Fluid Mech., Vol. 12, pp. 333-336.
    105. Lyne, W. H. (1971) “Unsteady viscous flow over a wavy wall,” J. Fluid Mech., Vol. 50, No. 1, pp. 33-48.
    106. Madsen, P. A. and O. R. Sorensen (1992) “A new form of the Boussinesq equations with improved linear dispersion characteristics (part 1),” Coastal Eng., Vol. 18, pp. 183-204.
    107. Malarkey, J. and A. G. Davies (2002) “Discrete vortex modeling of oscillatory flow over ripples,” Applied Ocean Res., Vol. 24, pp. 127-145.
    108. Malarkey, J. and A. G. Davies (2004) “An eddy viscosity formulation for oscillatory flow over vortex ripples,” J. Geophysical Res., Vol. 109(C12), No. C12016.
    109. Mansard, E. P. D. and E. R. Funke (1980) “The measurement of incident and reflected spectra using a least squares method,” Proc. 17th Int. Conf. Coastal Eng., ASCE, Sydney, Australia, pp. 154–172.
    110. Marin, F. (2004) “Eddy viscosity and Eulerian drift over rippled over beds in waves,” Coastal Eng., Vol. 50, pp. 139-159.
    111. Massel, S. R. (2001) “Wavelet analysis for processing of ocean surface wave records,” Ocean Eng., Vol. 28, pp. 957-987.
    112. Masselink, G., M. J. Austin, T. J. O’Hare, and P. E. Russell (2007) “Geometry and dynamics of wave ripples in the nearshore zone of a coarse sandy beach,” J. Geophysical Res., Vol. 112, No. C10022.
    113. Masuda, A., Y. Y. Kuo, and H. Mitsuyasu (1977) “On the dispersion relation of random gravity waves. Part 1. Theoretical framework,” J. Fluid Mech., Vol. 92, pp. 717-730.
    114. Mathisen, P. P. and O. S. Madsen (1996a) “Waves and currents over a fixed rippled bed. 1. Bottom roughness experienced by waves in the presence and absence of currents,” J. Geophysical Res., Vol. 101, No. C7, pp. 16533-16542.
    115. Mathisen, P. P. and O. S. Madsen (1996b) “Waves and currents over a fixed rippled bed. 2. Bottom and apparent roughness experienced by currents in the presence of waves,” J. Geophysical Res., Vol. 101, No. C7, pp. 16543-16550.
    116. Mathisen, P. P. and O. S. Madsen (1999) “Waves and currents over a fixed rippled bed. 3.Bottom and apparent roughness for spectral waves and currents,” J. Geophysical Res., Vol. 104, No. C8, pp. 18447-18461.
    117. Matsunaga, N., A. Kaneko, and H. Honji (1981) “A numerical study of steady streamings in oscillatory flow over a wavy wall,” J. Hydraul. Res., Vol. 19, No. 1, pp. 29-42.
    118. Medina, J. R., J. Aguilar, and J. J. Diez (1985) “Distortions associated with random sea simulations,” J. Waterw., Port, Coast. Ocean Eng., ASCE, Vol. 111, pp. 603-628.
    119. Mei, C.-C. (1989) The applied dynamics of ocean surface waves, World Scientific Publ., Singapore.
    120. Miles, M. D. and E. R. Funke (1988) “Numerical comparison of wave synthesis methods,” Proc. 21st Int. Conf. Coastal Eng., ASCE, Coata del Sol-Malaga, Spain, Vol. 1, pp.91-105.
    121. Mitsuyasu, H., Y. Y. Kuo, and A. Masuda (1979) “On the dispersion relation of random gravity waves. Part 2. An experiment,” J. Fluid Mech., Vol. 92, pp. 791-749.
    122. Mori, N., and Yasuda, T. (1996) “Weakly non-Gaussian model of wave height distribution for nonlinear random waves,” Proc. 25th Int. Conf. Coastal Eng., ASCE, Orlando, Florida, pp. 850-863.
    123. Mori, N., and Yasuda, T. (2002) “A weakly non-Gaussian model of wave height distribution for nonlinear random wave train,” Ocean Eng., Orlando, Florida, pp. 850-863.
    124. Myrhaug, D. (1995) “Bottom friction beneath random waves,” Coastal Eng., Vol. 24, pp. 259-273.
    125. Myrhaug, D. and L. E. Holmedal (2001) “Beload sediment transport rate by nonlinear random waves,” Coastal Eng., Vol. 43, No. 3, pp. 133-142.
    126. Myrhaug, D. and L. E. Holmedal (2003) “Laminar bottom friction beneath nonlinear random waves,” Coastal Eng. J., Vol. 45, pp. 49-61.
    127. Myrhaug, D., K. F. Lambrakos, and O. H. Slaattelid (1992) “Wave boundary layer in flow measurements near the seabed,” Coastal Eng., Vol. 18, pp.153-181.
    128. Myrhaug, D., O. H. Slaattelid, and K. F. Lambrakos (1998) “Seabed shear stresses under random waves: predictions vs. estimates from field measurements,” Ocean Eng., Vol 25, pp. 907-916.
    129. Nielsen, P. (1981) “Dynamics and geometry of wave-generated ripples,” J. Geophysical Res., Vol. 86, No. C7, pp. 6467-6472.
    130. Nielsen, P. (1986) “Suspended sediment concentrations under waves,” Coastal Eng., Vol. 10, No. 1, pp. 23-31.
    131. Nielson, P. (1992) Coastal Bottom Boundary Layers and Sediment Transport, Advanced Series on Ocean Engineering, vol. 4. World Scientific, Singapore.
    132. Nwogu, O. (1993) “An alternative form of the Boussinesq equations for modeling the propagation of waves from deep to shallow water,” J. Waterw., Port, Coast., Ocean Eng., ASCE, Vol. 119, No. 6, pp. 618-638.
    133. Nybakken, J. W. and M. D. Bertness (2005) Marine biology: an ecological approach, 6th ed., Benjamin Cummings, San Francisco.
    134. Ochi, M. K., (1986) “Non-Gaussian random processes in ocean engineering”, J. Prob. Eng. Mech., Vol. 1, No. 1, pp. 28-39.
    135. O’Donoghue, T., J. S. Doucette, J. J. van der Werf, and J. S. Ribberink (2006) “The dimensions of sand ripples in full-scale oscillatory flows,” Coastal Eng., Vol. 53, No. 12, pp. 997-1012.
    136. Ohyama, T. (1991) “Development of a numerical wave tank for analysis of nonlinear and irregular wave field,” Fluid Dyn. Res., Vol. 8, pp. 231-251.
    137. Ohyama, T., S. Beji, K. Nadaoka, and J. A. Battjes (1994) “Experimental verification of numerical model for nonlinear wave evolutions,” J. Waterw., Port, Coast., Ocean Eng., ASCE, Vol. 120, No. 6, pp. 637-644.
    138. Ohyama, T. and K. Nadaoka (1994) “Transformation of a nonlinear wave train passing over a submerged shelf without breaking,” Coastal Eng., Vol. 24, pp. 1-22.
    139. Onorato, M., A. R. Osborne, M. Serio, and L. Cavaleri (2005) “Modulation instability and non-Gaussian statistics in experimental random water-wave trains,” Phys. Fluid, Vol. 17, No. 078101.
    140. Ourmières, Y. and J. R. Chaplin (2004) “Visualizations of the disturbed-laminar wave-induced flow above a rippled bed,” Experiments in Fluid, Vol. 36, pp. 908-918.
    141. Patankar, S. V. (1979) “A calculation procedure for two-dimensional elliptic situations,” Numerical Heat Transfer, Vol. 2.
    142. Peregrine, D. H. (1967) “Long waves on a beach,” J. Fluid Mech., Vol. 27, pp. 815-827.
    143. Phillips, O. M. (1960) “On the dynamics of unsteady gravity waves of finite amplitude. Part 1. The elementary interactions,” J. Fluid Mech., Vol. 9, pp. 193-217.
    144. Phillips, O. M. (1977) The Dynamics of the Upper Ocean, 2nd ed., Cambridge University Press, New York.
    145. Pierson, W. J. and L. Moskowitz (1964) “A proposed spectral form for full-developed wind sea based on the similarity law of S. A. Kitaigorodoskii,” J. Geophysical Res., Vol. 69, pp. 5202.
    146. Ploeg, J. and E. R. Funke (1980) “A Survey of Random Wave Generation Techniques,” Proc. 17th Int. Conf. Coastal Eng., ASCE, Sydney, Australia, Vol. 1, pp. 135-153.
    147. Precht, E., and M. Huettel (2004) “Rapid wave-driven advective pore water exchange in a permeable coastal sediment,” J. Sea Res., Vol. 51, 93-107.
    148. Rambabu, A. C. and J. S. Mani (2005) “Numerical prediction of performance of submerged breakwater,” Ocean Eng., Vol. 32, pp. 1235-1246.
    149. Rice, S. O. (1955) Mathematical analysis of random noise. In Selected Papers on Noise and Stochastic Process, N. Wax, ed., Dover Publications, Inc., New York, pp. 133-294.
    150. Rousseaux, G. (2006) “Physical distinction between rolling-grain ripples and vortex ripples: An experimental study,” Phys. Rev. E, Vol. 69, No. 066305, p. 7.
    151. Rousseaux, G., H. Yoshikawa, A. Stegner and J. E. Wesfried (2004) “Dynamics of transient eddy above rolling-grain ripples,” Phys. Fluids, Vol. 16, No. 4, pp. 1049-1058.
    152. Saffman, P. G. (1992) Vortex dynamics, Cambridge University Press, Cambridge.
    153. Samad, M. A., H. Tanaka, B. M. Sumer, J. Fredsøe, and C. Lodahl (1998) “Study on bottom shear stress under irregular waves,” Proc. of Coast. Eng., JSCE, Vol. 45, pp. 91-95 (in Japanese).
    154. Sand, S. E. and E. P. D. Mansard (1986) “Reproduction of higher harmonics in irregular waves,” Ocean Eng., Vol. 13, No. 1, pp. 57-83.
    155. Sato, S., N. Mimura, and A. Watanabe (1984) “Oscillatory boundary layer flow over rippled beds,” Proc. 25th Int. Conf. Coastal Eng., ASCE, Houston, Texas, pp. 2293-2309.
    156. Sato, S., K. Shimosako, and A. Watanabe (1987) “Measurements of oscillatory boundary layer flows above ripples with a laser-Doppler velocimeter,” Coastal Eng. Japan, Vol. 30, pp. 89-98.
    157. Schäffer, H. A. (1993) “Second order irregular-wave generation in flumes – computation of transfer function by an asymptotic summation method,” Proc. WAVES '93, ASCE, New Orleans, pp. 784-797.
    158. Schäffer, H. A. (1996) “Second-order wavemaker theory for irregular waves,” Ocean Eng., Vol. 23, No. 1, pp. 47-88.
    159. Scheibye-Knudsen, K., C. Ellegaard, and F. Bundgaard (2005) “Sand ripples under water with complex wave motion,” Phys. Rev. E, Vol. 72, No. 016209.
    160. Scherer, M., A, F. Melo, and M. Marder (1999) “Sand ripples in an oscillating annular sand-water cell,” Phys. Fluids, Vol. 11, No. 58, pp. 58-67.
    161. Sharma, J. N. (1979) Development and evaluation of a procedure for simulating a random directional second-order sea surface and associated wave forces, Ph.D. Dissertation, University of Delaware.
    162. Sharma, J. N. and R. G. Dean (1981) “Second-order directional seas and associated wave forces,” J. Soc. Petroleum Eng., pp. 129-140.
    163. Shen, M.-L. and C.-J. Huang (2005) “Nonlinear random waves and the associated spectra of shear stresses,” The Seventh Regional Symposium PACON 2005, Chienkuo Technology University, Changhua, Taiwan (R.O.C.).
    164. Sistermans, P. G. J. (2002) Graded sediment transport by non-breaking waves and a current, Ph.D. Dissertation, Delft University of Technology, the Netherlands.
    165. Sleath J. F. A. (1984) Sea Bed Mechanics, Wiley.
    166. Sleath, J. F. A. (1995) “Coastal bottom boundary layers,” Appl. Mech. Rev., Vol. 48, pp. 589-600.
    167. Sulisz, W., and M. Paprota (2008) “Generation and propagation of transient nonlinear waves in a wave flume,” Coastal Eng., Vol. 55, No. 4, pp. 277-287.
    168. Song, J. B., and Y. H. Wu (1999a) “Statistical distribution of water-particle velocity below the surface layer for finite water depth,” Coastal Eng., Vol. 40, No. 1, pp. 1-19.
    169. Song, J. B., and Y. H. Wu (1999b) “Statistical distribution of maximum surface displacement in weakly nonlinear random waves,” J. Waterw., Port, Coast., Ocean Eng., ASCE, Vol. 125, No. 2, pp. 59-65.
    170. Song, J.-B., Y. J. Hou, Y. J. He, Y.-H. Wu, B. S. Yin (2002) “Statistical distribution of wave-surface elevation for second-order random directional ocean waves in finite water depth,” Coastal Eng., Vol. 46, No. 1, pp. 51-60.
    171. Stamos, D. G. and M. R. Hajj (2001) “Reflection and transmission of waves over submerged breakwaters,” J. Eng. Mech., Vol. 127, No. 2, pp. 99-105.
    172. Stegner, A., and J. E. Wesfreid (1999) “Dynamical evolution of sand ripples under water,” Phys. Rev. E, Vol. 60, No. R3487, p. 4.
    173. Sulisz, W. and R. T. Hudspeth (1993) “Complete second-order solution for water waves generated in wave flumes,” J. Fluids and Structures, Vol. 7, pp. 253-268.
    174. Swart, D. H. (1974) Offshore sediment transport and equilibrium beach profiles, Ph.D. Dissertation, Delft University of Technology, the Netherlands. (also: Publication 131. Delft Hydraulics)
    175. Tanaka, H. and M. A. Samad (2006) “Prediction of instantaneous bottom shear stress for smooth turbulent bottom boundary layers under irregular waves,” J. Hydraul. Res., Vol. 44, pp. 94-106.
    176. Tang, C. J., V. C. Patel, and L. Landweber (1990) “Viscous effects on propagation and reflection of solitary waves in shallow channels,” J. Comput. Physics, Vol. 88, No. 1, pp. 86-113.
    177. Tayfun, M. A., (1980) “Narrow-band nonlinear sea waves”, J. Geophysical Res., Vol. 85, pp. 1548-1552.
    178. Tayfun, M. A., (1994) “Distributions of envelope and phase in weakly nonlinear random waves,” J. Waterw., Port, Coast., Ocean Eng., ASCE, vol. 120, No. 4, pp. 1009-1025.
    179. Tayfun, M. A., and J. M. Lo (1989) “Envelope, phase, and narrow-band models of sea waves”, J. Waterw., Port, Coast., Ocean Eng., ASCE, vol. 115, No. 5, pp. 594-613.
    180. Testik, F. Y., S. I. Voropayev, and H. J. S. Fernando (2005) “Adjustment of sand ripples under changing water waves,” Phys. Fluids, Vol. 17, No. 072104.
    181. Thompson, J. F. (1982) Numerical Grid Generation, North-Holland (Also published as Vol. 10-11 of Applied Mathematics and Computation)
    182. Tick, L. J. (1963) “Nonlinear probability models of ocean waves,” Ocean wave spectra :proceedings of a conference, Easton, Maryland, Prentice-Hall, pp. 163-169.
    183. Ting, C. L., M. C. Lin, and C. M. Hsu (2005) “Spatial variations of waves propagating over a submerged rectangular obstacle,” Ocean Eng., Vol. 32, pp. 1448-1464.
    184. Ting, F. C. K. and Y.-K Kim (1994) “Vortex generation in water waves propagating over a submerged obstacle,” Coastal Eng., Vol. 24, No. 1-2, pp. 23-49.
    185. Traykovski, P. (2007) “Observation of wave orbital scale ripples and a nonequilibrium time-dependent model,” J. Geophysical Res., Vol. 112, C06026.
    186. Traykovski, P., A. E. Hay, J. D. Irish, and J. F. Lynch (1999) “Geometry, migration, and evolution of wave orbital ripples at LEO-15,” J. Geophysical Res., Vol. 104, No. C1, pp. 1505-1524.
    187. Troch, P. and J. De Rouck (1998) “Development of two-dimensional numerical wave flume for wave interaction with rubble mound breakwaters,” Proc. 25th Int. Conf. Coastal Eng., ASCE, Copenhagen, Denmark, pp. 1638-1649.
    188. Trowbridge, J. H. and O. S. Madsen (1984) “Turbulent boundary layers: 2. Second-order theory and mass transport,” J. Geophysical Res., Vol 89, No. C12, pp. 7999-8007.
    189. Tuah, H. and R. T. Hudspeth (1982) “Comparisons of numerical random sea simulations,” J. Waterw., Port, Coast. Ocean Div., ASCE, Vol. 108, pp. 569-584.
    190. Tucker, M. J., P. G. Challenor, and D. J. T. Capter (1984) “Numerical simulation of a random sea: a common error and its effect upon wave group statistics,” Appl. Ocean Res., Vol. 6, pp. 118-122.
    191. Tung, C.-C. (1975) “Statistical properties of the kinematics and dynamics of a random gravity-wave field,” J. Fluid Mech., Vol. 70, No. 2, pp. 193-217.
    192. Tung, C.-C. and Huang, N. E. (1984) “Statistical properties of the kinematics and dynamics of nonlinear waves,” J. Phys. Oceanography, Vol. 14, No. 3, pp. 594-600.
    193. Tunstall, E. B. and D. L. Inman (1975) “Vortex generation by oscillatory flow over rippled surfaces,” J. Geophysical Res., Vol. 80, pp. 3475-3484.
    194. Vittori, G. and P. Blondeaux (1992) “Sand ripples under sea waves. Part 3. Brick-pattern ripple formation,” J. Fluid Mech., Vol. 239, pp. 23-45.
    195. Van der Werf, J. J. (2003) “Sand ripples in irregular and changing wave conditions: A review of laboratory and field studies,” SANDPIT Report, available at http://sandpit.wldelft.nl/reportpage/right/SandpitLiteratureReviewVanDerWerf.pdf, University of Twente, the Netherlands.
    196. Van der Werf, J. J., and J. S. Doucette, T. O’Donoghue, J. S. Ribberink (2007) “Detailed measurements of velocities and suspended sand,” J. Geophysical Res., Vol. 122, F02012.
    197. Van der Werf, J. J., J. S. Ribberink, T. O’Donoghue , and J. S. Doucette, (2006) “Modelling and measurement of sand transport processes over full-scale ripples in oscillatory flow,” Coastal Eng., Vol. 53, pp. 657-673.
    198. Van Leeuwen, P. J. and G. Klopman (1996) “A new method for the grneration of second-order random waves,” Ocean Eng., Vol. 23, No. 2, pp. 167-192.
    199. Van Rijn, L. C. (1993) Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas, Aqua, Amsterdam.
    200. Weber, B. L. and D. E. Barrick (1977) “On the nonlinear theory for gravity waves on the ocean surface. Part 1: Derivations,” J. Phys. Oceanography, Vol. 7, pp. 1-11.
    201. Wiberg, P. L. and C. K. Harris (1994) “Ripple geometry in wave-dominated environments,” J. Geophysical Res., Vol. 99, No. C1, pp. 775-789.
    202. Williams, J. J., P. S. Bell, P. D. Thorn, N. Metje, and E. Coates (2004) “Measurement and prediction of wave-generated suborbital ripples,” J. Geophysical Res., Vol. 109, C02004.
    203. Witting, J. M. (1984) “A unified model for the evolution of nonlinear water waves,” J. Comp. Phys., Vol. 56, pp. 203-236.
    204. Yoshida, A., K. Murakami, M. Yamashiro, and H. Kojima (1996) “Second-order interaction between random wave and submerged obstacle,” Proc. 25th Int. Conf. Coastal Eng., ASCE, Orlando, Florida, pp. 927-940.
    205. Yasuda, T., T. Yamashita, S. Goto, and Y. Tsuchiya (1982) “Numerical calculations for wave shoaling on a sloping bottom by KdV equation,” Coastal Eng. in Japan, Vol. 25, pp. 1-23.
    206. Young, I. R. (1989) “Wave transformation over coral reefs,” J. Geophysical Res., Vol. 94, pp. 9779-9789.
    207. Yuen, H. C. and B. M. Lake (1982) “Nonlinear dynamics of deep-water gravity waves,” Advan. Appl. Mech., Vol. 22, pp. 67-229.
    208. Zedler, E. A. and R. L. Street (2006), “Sediment transport over ripples in oscillatory flow,” J. Hydraulic Eng., Vol. 132, No. 2, pp. 180-193.
    209. Zhang, H., O. S. Madsen, S. A. Sannasiraj, and E. S. Chan (2004) “Hydrodynamic model with wave-current interaction in coastal regions,” Estuarine, Coastal and Shelf Science, Vol. 61, pp. 317-324.
    210. Zhang, J. and L. Chen (1999) “General third-order solutions for irregular waves in deep water,” J. Eng. Mech., Vol. 125, No. 7, pp. 768-779.

    下載圖示 校內:立即公開
    校外:2008-07-09公開
    QR CODE