| 研究生: |
林俊豪 Lin, Jun-Hao |
|---|---|
| 論文名稱: |
以三變量Copula探討雨量、潮位、流量對海岸複合淹水風險之影響 Analyzing Coastal Compound Flood Risk Under the Influences of Rainfall, Tide, and Discharge Using Trivariate Copula |
| 指導教授: |
張駿暉
Jang, Jiun-Huei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 複合淹水 、聯結函數 、淹水模擬 、頻率分析 、淹水風險 |
| 外文關鍵詞: | Compound flooding, Copula, Flood simulation, Frequency analysis, Flooding risk |
| 相關次數: | 點閱:97 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於由多個淹水因素引發的淹水事件,淹水因素之間的相依性對洪水風險有極大影響。本研究以統計模型結合淹水數值模擬探究淹水風險,分析不同情境對於淹水風險的影響以及傳統與非傳統淹水頻率分析差異。使用雙、三變量聯結函數來建構大安溪沿海地區31場歷史事件中,雨量、潮位、流量的聯合機率模型,利用最大概似法估計模型參數,並藉由赤池訊息準則與貝葉斯信息準則選取最佳聯合機率模型。本研究共提出四種淹水情境統計模型,分別為(1) 雨量機率分布(Scenario-R)、(2)雨量、潮位聯合機率分布(Scenario-RT)、(3) 雨量、流量聯合機率分布(Scenario-RQ)、(4)雨量、潮位、流量聯合機率分布(Scenario-RTQ),為了估算4種情境的淹水風險,根據各情境最佳機率分布,採用蒙地卡羅法(Monte Carlo Simulation Method)繁衍1000場淹水變量,作為淹水模擬之輸入條件,根據淹水模擬結果(平均淹水深度),得知輸入情境為Scenario-RQ與Scenario-RTQ時,淹水深度與歷史淹水深度經驗累積分布(ECDF)具有同質性,其中Scenario-RQ之RMSE為0.0095 m為最合適淹水情境。選擇Scenario-RQ聯合機率分布對研究區域進行傳統淹水聯合重現期分析,另外使用Scenario-RQ模擬的平均淹水深度ECDF計算淹水重現期,兩者進行比較,顯示後者估算的重現期介於傳統淹水重現期交集與聯集情況,代表以聯合重現期分析淹水風險容易偏估。故本研究提出以淹水深度量化淹水發生機率方法,能較準確評估淹水風險,可應用於不同地區,加強複合淹水影響下的淹水風險與災害管理。
For flooding triggered by multiple factors, flood risks are greatly influenced by the correlations among these triggering factors. In this study, copulas were used to describe the joint probability of rainfall (R), storm surge (T), and river discharge (Q) based on 31 historical events in the coastal area of the Daan River, Taiwan. The model parameters were estimated using the maximum likelihood method, and the best-fit marginal and copula functions were selected using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). In this study, the flooding scenarios were analyzed based on 4 statistical models considering different triggering factors: (1) Scenario-R (considering only R), (2) Scenario-RT(considering R & T), (3) Scenario-RQ (considering R & Q) (4) (considering R & T & Q). In order to estimate the flood risk, the Monte Carlo Simulation Method is used to generate 1000 sets of flood variables as input conditions for flood simulation. Based on the results of the flood simulation (average flood depth). The results show that the root mean square error (RMSE) of Scenario-RQ is 0.0095 m, making it the most suitable flooding scenario. The return period of the average flood depth for the Scenario-RQ falls between the joint return periods when R and Q were simultaneously and individually exceeded. This suggests that flood risk will be misestimated by traditional joint probability. The method proposed in this study assess flood risk better and can be applied to different regions to enhance flood risk under compound flood impacts.
1.Bevacqua, E., Maraun, D., Haff, I. H., Widmann, M., & Vrac, M. (2017). Multivariate statistical modelling of compound events via pair-copula constructions: Analysis of floods in Ravenna (Italy). Hydrology and Earth System Sciences, 21(6), 2701–2723.
2.Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., & Widmann, M. (2019). Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change. Science Advances, 5(9) , eaaw5531.
3.Chebana, F., & Ouarda, T. B. M. J. (2009). Index flood–based multivariate regional frequency analysis. Water Resources Research, 45(10).
4.Chen, A. S., Djordjević, S., Leandro, J., & Savić, D. A. (2010). An analysis of the combined consequences of pluvial and fluvial flooding. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 62(7),1491-1498.
5.Coles, S., Heffernan, J., & Tawn, J. (1999). Dependence Measures for Extreme Value Analyses. Extremes, 2, 339–365.
6.Couasnon, A., Sebastian, A., & Morales-Nápoles, O. (2018). A copula-based Bayesian network for modeling compound flood hazard from riverine and coastal interactions at the catchment scale: An application to the Houston Ship Channel, Texas. Water, 10(9), 1190.
7.Dimitriadis, P., Tegos, A., Oikonomou, A., Pagana, V., Koukouvinos, A., Mamassis, N., Koutsoyiannis, D., & Efstratiadis, A. (2016). Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping. Journal of Hydrology, 534, 478–492.
8.Fang, J., Wahl, T., Fang, J., Sun, X., Kong, F., & Liu, M. (2021). Compound flood potential from storm surge and heavy precipitation in coastal China: Dependence, drivers, and impacts. Hydrology and Earth System Sciences, 25(8), 4403–4416.
9.Favre, A. C., El Adlouni, S., Perreault, L., Thiémonge, N., & Bobée, B. (2004). Multivariate hydrological frequency analysis using copulas. Water resources research, 40(1).
10.Gallien, T. W., Kalligeris, N., Delisle, M.-P. C., Tang, B.-X., Lucey, J. T. D., & Winters, M. A. (2018). Coastal Flood Modeling Challenges in Defended Urban Backshores. Geosciences, 8(12), 450.
11.Ganguli, P., & Reddy, M. J. (2013). Probabilistic assessment of flood risks using trivariate copulas. Theoretical and applied climatology, 111, 341-360.
12.Ganguli, P., & Merz, B. (2019). Extreme coastal water levels exacerbate fluvial flood hazards in Northwestern Europe. Scientific reports, 9(1), 1-14.
13.Genest, C., & Favre, A. C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of hydrologic engineering, 12(4), 347-368.
14.Genest, C., & Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. In Annales de l'IHP Probabilités et statistiques (Vol. 44, No. 6, pp. 1096-1127).
15.Grimaldi, S., & Serinaldi, F. (2006). Asymmetric copula in multivariate flood frequency analysis. Advances in Water Resources, 29(8), 1155-1167.
16.Hsiao, S.-C., Chiang, W.-S., Jang, J.-H., Wu, H.-L., Lu, W.-S., Chen, W.-B., & Wu, Y.-T. (2021). Flood risk influenced by the compound effect of storm surge and rainfall under climate change for low-lying coastal areas. Science of the Total Environment, 764, 144439.
17.Hühne, S., Reinoso, J., Jansen, E., & Rolfes, R. (2016). A two-way loose coupling procedure for investigating the buckling and damage behaviour of stiffened composite panels. Composite Structures, 136, 513–525.
18.Jane, R., Cadavid, L., Obeysekera, J., & Wahl, T. (2020). Multivariate statistical modelling of the drivers of compound flood events in south Florida. Natural Hazards and Earth System Sciences, 20(10), 2681-2699.
19.Jang, J.-H., & Chang, T.-H. (2022). Flood risk estimation under the compound influence of rainfall and tide. Journal of Hydrology, 606, 127446.
20.Joe, H. (1997). Multivariate models and multivariate dependence concepts. CRC press.
21.Karamouz, M., Zahmatkesh, Z., Goharian, E., & Nazif, S. (2015). Combined impact of inland and coastal floods: Mapping knowledge base for development of planning strategies. Journal of Water Resources Planning and Management, 141(8), 04014098.
22.Kew, S. F., Selten, F. M., Lenderink, G., & Hazeleger, W. (2013). The simultaneous occurrence of surge and discharge extremes for the Rhine delta. Natural Hazards and Earth System Sciences, 13(8), 2017–2029.
23.Lesser, G. R. (2009). An approach to medium-term coastal morphological modelling.
24.Latif, S., Mustafa, F., Latif, S., & Mustafa, F. (2020). Trivariate distribution modelling of flood characteristics using copula function—A case study for Kelantan River basin in Malaysia. AIMS Geosciences, 6(1), 92–130.
25.Latif, S., & Simonovic, S. P. (2023). Compounding joint impact of rainfall, storm surge and river discharge on coastal flood risk: An approach based on 3D fully nested Archimedean copulas. Environmental Earth Sciences, 82(2), 63.
26.Leonard, M., Westra, S., Phatak, A., Lambert, M., Hurk, B., Mcinnes, K., Risbey, J., Schuster, S., Jakob, D., & Stafford Smith, M. (2014). A compound event framework for understanding extreme impacts. Wiley Interdisciplinary Reviews: Climate Change, 5(1), 113–128.
27.Lian, J. J., Xu, K., & Ma, C. (2013). Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: A case study of Fuzhou City, China. Hydrology and Earth System Sciences, 17(2), 679–689.
28.Liu, Q., Xu, H., & Wang, J. (2022). Assessing tropical cyclone compound flood risk using hydrodynamic modelling: A case study in Haikou City, China. Natural Hazards and Earth System Sciences, 22(2), 665–675.
29.Lu, W., Tang, L., Yang, D., Wu, H., & Liu, Z. (2022). Compounding Effects of Fluvial Flooding and Storm Tides on Coastal Flooding Risk in the Coastal-Estuarine Region of Southeastern China. Atmosphere, 13(2) , 238.
30.Maskell, J., Horsburgh, K., Lewis, M., & Bates, P. (2014). Investigating River-Surge Interaction in Idealised Estuaries. Journal of Coastal Research, 30(2), 248–259.
31.Matsumoto, K., Takanezawa, T., & Ooe, M. (2000). Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. Journal of oceanography, 56, 567-581.
32.Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B. F., & Matthew, R. A. (2017). Compounding effects of sea level rise and fluvial flooding. Proceedings of the National Academy of Sciences of the United States of America, 114(37), 9785–9790.
33.Poulin, A., Huard, D., Favre, A. C., & Pugin, S. (2007). Importance of tail dependence in bivariate frequency analysis. Journal of hydrologic engineering, 12(4), 394-403.
34.Pugh, D. T., & Vassie, J. M. (1980). Applications of the joint probability method for extreme sea level computations. Proceedings of the Institution of Civil Engineers, 69(4), 959-975.
35.Saleh, F., Ramaswamy, V., Wang, Y., Georgas, N., Blumberg, A., & Pullen, J. (2017). A multi-scale ensemble-based framework for forecasting compound coastal-riverine flooding: The Hackensack-Passaic watershed and Newark Bay. Advances in Water Resources, 110, 371-386.
36.Salvadori, G., & De Michele, C. (2006). Statistical characterization of temporal structure of storms. Advances in Water Resources, 29(6), 827-842.
37.Sanders, B. F., Schubert, J. E., & Detwiler, R. L. (2010). ParBreZo: A parallel, unstructured grid, Godunov-type, shallow-water code for high-resolution flood inundation modeling at the regional scale. Advances in Water Resources, 33(12), 1456–1467.
38.Santiago-Collazo, F. L., Bilskie, M. V., & Hagen, S. C. (2019). A comprehensive review of compound inundation models in low-gradient coastal watersheds. Environmental Modelling & Software, 119, 166–181.
39.Santos, V. M., Casas-Prat, M., Poschlod, B., Ragno, E., van den Hurk, B., Hao, Z., Kalmár, T., Zhu, L., & Najafi, H. (2021). Statistical modelling and climate variability of compound surge and precipitation events in a managed water system: A case study in the Netherlands. Hydrology and Earth System Sciences, 25(6), 3595–3615.
40.Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. In Annales de l'ISUP (Vol. 8, No. 3, pp. 229-231).
41.Svensson, C., & Jones, D. A. (2004). Dependence between sea surge, river flow and precipitation in south and west Britain. Hydrology and Earth System Sciences, 8(5), 973–992.
42.Visser-Quinn, A., Beevers, L., Collet, L., Formetta, G., Smith, K., Wanders, N., Thober, S., Pan, M., & Kumar, R. (2019). Spatio-temporal analysis of compound hydro-hazard extremes across the UK. Advances in Water Resources, 130, 77–90.
43.Wahl, T., Jain, S., Bender, J., Meyers, S. D., & Luther, M. E. (2015a). Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nature Climate Change, 5(12), 1093.
44.Wahl, T., Jain, S., Bender, J., Meyers, S. D., & Luther, M. E. (2015b). Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nature Climate Change, 5(12), 1093-1097.
45.Xu, K., Wang, C., & Bin, L. (2022). Compound flood models in coastal areas: A review of methods and uncertainty analysis. Natural Hazards.
46.Zhang, Y., & Najafi, M. R. (2020). Probabilistic numerical modeling of compound flooding caused by Tropical Storm Matthew over a data‐scarce coastal environment. Water Resources Research, 56(10), e2020WR028565.
47.Zheng, F., Westra, S., Leonard, M., & Sisson, S. A. (2014). Modeling dependence between extreme rainfall and storm surge to estimate coastal flooding risk. Water Resources Research, 50(3), 2050–2071.
48.Zscheischler, J., Westra, S., Hurk, B., Seneviratne, S., Ward, P., Pitman, A., AghaKouchak, A., Bresch, D., Leonard, M., Wahl, T., & Zhang, X. (2018). Future climate risk from compound events. Nature Climate Change, 8(6), 469–477.
49.江文山(2019),雲嘉海岸(外傘頂洲)侵退防治先期規劃研究,財團法人成大研究發展基金會。
50.張志新, 陳偉柏, 林媺瑛, 陳奕如, 于宜強, & 林欣弘. (2021).,沿海鄉鎮之動態淹水警戒值的建置與測試。
51.連育成 (2021),「以聯結函數補遺日懸浮載輸砂量」,國立成功大學水利工程研究所碩士論文。
52.經濟部水資源局 (2001),「水文設計應用手冊」。
53.蔡岳霖 (2022),「以三變量Copula聯結函數探討雨型對淹水風險之影響」,國立成功大學水利工程研究所碩士論文。