簡易檢索 / 詳目顯示

研究生: 賀靖雅
Ho, Jing-Ya
論文名稱: 以任務科技配適度觀點探討顧客採用行動APP購物之行為-以蝦皮購物為例
Exploring the Behaviors That Customer Use Mobile Shopping Application From the Perspectives of Task-Technology Fit – The case of Shopee
指導教授: 蔡燿全
Tsai, Yao-Chuan
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 65
中文關鍵詞: 任務科技適配理論(TTF)購物型App績效表現任務特性科技特性
外文關鍵詞: Task-Technology Fit, Shopping app, performance impact, task characteristics, technology characteristics
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著智慧型裝置普及以及網際網路蓬勃發展,行動世代之來臨造就新興商業模式及人們不同的生活型態。在眾多種類的App中,購物類型逐漸在這幾年嶄露頭角,在2017年購物型App的成長比例為各類別中幅度最大的,但過去在購物型App的相關研究中,相當多以科技接受模型探討研究,以任務科技適配理論來探討使用者使用行動購物App之行為未見及。
    本研究以Goodhue & Thompson(1995)的任務科技適配理論為基礎,探討使用者對購物型App之使用行為,資料蒐集方式為網路問卷,目標對象為有使用過蝦皮購物App並購買過美妝保健類及居家生活類用品的使用者。研究結果發現:(1)任務特性與任務科技配適度無顯著關係,(2)科技特性對任務科技配適度有顯著正向關係(3) 任務科技配適度對於績效表現有顯著正向關係。

    The purpose of the study was to investigate if task- technology fit would influence individual performance impact. This model is employed to explore usage performance to use shopping apps from the perspectives of task-technology fit. The first hypotheses: task characteristics positively affect the task technology fit in shopping apps. The second hypotheses: technology characteristics positively affect the task technology fit in shopping apps. The third hypotheses: task-technology fit positively affects the performance to use Shopping apps. The fourth hypotheses: task characteristics positively affects the performance to use Shopping apps. The fifth hypotheses: technology characteristics positively affects the performance to use Shopping apps. An internet survey was adopted to collect the data. The results revealed that the higher task-technology fit of shopping apps are, the higher performance impact toward those apps are. Based on 5-point Likert Scale, the survey concluded: (a)among the valid respondents, 90% were female, and (b) most of survey respondents, their experience of using smart phone is over 5 years. To sum up my research: (a) There is no significant relationship between task characteristics and task-technology fit, and (b) Technology Characteristics would positively affect task-technology fit and performance. (c) Task Characteristics would positively affect performance.

    摘要 誌謝 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 4 第三節 研究目的 7 第四節 研究流程 7 第二章 文獻探討 9 第一節 任務科技適配度 9 第二節 購物App 13 第三節 過去相關研究 18 第三章 研究方法 22 第一節 研究架構 22 第二節 研究假說 23 第三節 問卷設計 23 第五節 研究對象與方法 27 第六節 資料分析方法 28 第四章 資料分析 30 第一節 敘述性統計 30 第二節 樣本統計 32 第三節 問卷信效度檢定 37 第四節 相關分析 42 第五節 迴歸分析 43 第六節 樣本統計檢定與分析 44 第五章 結論 52 第一節 研究發現與貢獻 52 第二節 後續研究 54 參考文獻

    參考文獻
    中文文獻
    田巧宜(2013)。影響社交型App採用行為之因素探討。國立中山大學資訊管理學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/2faqy8
    楊王鴻(2014)。行動購物特性、網站互動性、消費者購物行為與網站購物-行動版App忠誠度之研究_以網站購物-行動板實證。國立臺北科技大學經營管理系碩士班碩士論文,台北市。 取自https://hdl.handle.net/11296/9ws634
    蘇芳亭(2013)。運用科技接受模型(TAM)與任務科技配適度(TTF)之整合探討消費者對平板電腦接受度之研究。國立臺北科技大學工業工程與管理系碩士班碩士論文,台北市。 取自https://hdl.handle.net/11296/7rnavs
    張榮森(2015)。行動購物APP服務品質、顧客滿意度與顧客忠誠度關係之研究。國立中山大學企業管理學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/e2djyg
    李炯廷(2016)。探討系統相關品質對消費者使用購物型APP意圖之影響: 以整合性科技接受模型為基礎。國立成功大學工業與資訊管理學系碩士在職專班碩士論文,台南市。 取自https://hdl.handle.net/11296/426mvx
    賴宥豪(2015)。以科技接受模型探討 行動購物APP使用之意願。國立高雄應用科技大學資訊管理研究所碩士班碩士論文,高雄市。 取自https://hdl.handle.net/11296/4dd5zf
    英文文獻
    Agrebi, S., &Jallais, J. (2015). Explain the intention to use smartphones for mobile shopping. Journal of Retailing and Consumer Services, 22, 16–23. https://doi.org/10.1016/J.JRETCONSER.2014.09.003
    Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
    Coursaris, Constantinos & Hassanein, Khaled & G Degroote, M. (2002). Understanding m-commerce: A consumer-centric model. Retrieved from https://www.researchgate.net/publication/228936046_Understanding_m-commerce_A_consumer-centric_model
    Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555
    Davis, F. D., &D., F. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008
    DeLone, W. H., &McLean, E. R. (1992). Information Systems Success: The Quest for the Dependent Variable. Information Systems Research, 3(1), 60–95. https://doi.org/10.1287/isre.3.1.60
    Dishaw, M. T., &Strong, D. M. (1999). Extending the technology acceptance model with task–technology fit constructs. Information & Management, 36(1), 9–21. https://doi.org/10.1016/S0378-7206(98)00101-3
    Fishbein, M., &Ajzen, I. (1977). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Retrieved from https://philpapers.org/rec/FISBAI
    Gebauer, J., Shaw, M. J., &Gribbins, M. L. (2010). Task-Technology Fit for Mobile Information Systems. Journal of Information Technology, 25(3), 259–272. https://doi.org/10.1057/jit.2010.10
    Goodhue, D. L., &Thompson, R. L. (1995). Task-Technology Fit and Individual Performance. MIS Quarterly, 19(2), 213. https://doi.org/10.2307/249689
    Groß, M. (2015). Exploring the acceptance of technology for mobile shopping: an empirical investigation among Smartphone users. The International Review of Retail, Distribution and Consumer Research, 25(3), 215–235. https://doi.org/10.1080/09593969.2014.988280
    Inge Klopping, &Earl McKinney. (2004). Extending the Technology Acceptance Model Extending the Technology Acceptance Model and the Task and the Task--Technology Fit Model to Technology Fit Model to Consumer E Consumer E- Commerce Commerce | Request PDF. Retrieved May29, 2019, from https://www.researchgate.net/publication/237251740_Extending_the_Technology_Acceptance_Model_Extending_the_Technology_Acceptance_Model_and_the_Task_and_the_Task--Technology_Fit_Model_to_Technology_Fit_Model_to_Consumer_E_Consumer_E-_Commerce_Commerce
    Kang, S., &Seok. (2014). Factors influencing intention of mobile application use. International Journal of Mobile Communications, 12(4), 360. https://doi.org/10.1504/IJMC.2014.063653
    Klopping, Inge & McKinney, E. (2004). Extending the Technology Acceptance Model Extending the Technology Acceptance Model and the Task and the Task--Technology Fit Model to Technology Fit Model to Consumer E Consumer E- Commerce Commerce | Request PDF. Retrieved from https://www.researchgate.net/publication/237251740_Extending_the_Technology_Acceptance_Model_Extending_the_Technology_Acceptance_Model_and_the_Task_and_the_Task--Technology_Fit_Model_to_Technology_Fit_Model_to_Consumer_E_Consumer_E-_Commerce_Commerce
    Lee, C.-C., Cheng, H. K., &Cheng, H.-H. (2007). An empirical study of mobile commerce in insurance industry: Task–technology fit and individual differences. Decision Support Systems, 43(1), 95–110. https://doi.org/10.1016/j.dss.2005.05.008
    Lee, K. C., Lee, S., &Kim, J. S. (2004). Analysis of Mobile Commerce Performance by Using the Task-Technology Fit. In Mobile Information Systems (pp. 135–153). https://doi.org/10.1007/0-387-22874-8_10
    Liang, T.-P., &Wei, C.-P. (2004). Introduction to the Special Issue: Mobile Commerce Applications. International Journal of Electronic Commerce, 8(3), 7–17. https://doi.org/10.1080/10864415.2004.11044303
    Lim, H., &Dubinsky, A. J. (2004). Consumers’ perceptions of e‐shopping characteristics: an expectancy‐value approach. Journal of Services Marketing, 18(7), 500–513. https://doi.org/10.1108/08876040410561839
    Lin, T.-C., &Huang, C.-C. (2008). Understanding knowledge management system usage antecedents: An integration of social cognitive theory and task technology fit. Information & Management, 45(6), 410–417. https://doi.org/10.1016/J.IM.2008.06.004
    Lu, H.-P., &Yang, Y.-W. (2014). Toward an understanding of the behavioral intention to use a social networking site: An extension of task-technology fit to social-technology fit. Computers in Human Behavior, 34, 323–332. https://doi.org/10.1016/j.chb.2013.10.020
    Natarajan, T., Balasubramanian, S. A., &Kasilingam, D. L. (2017). Understanding the intention to use mobile shopping applications and its influence on price sensitivity. Journal of Retailing and Consumer Services, 37, 8–22. https://doi.org/10.1016/J.JRETCONSER.2017.02.010
    Online, R., Ambra, J. D. ’, Wilson, C. S., Akter, S., Ambra, D. ’, Wilson, J., &Akter, C. &. (2013). Application of the task-technology fit model to structure and evaluate the adoption of e-books by academics Publication Details. Retrieved from http://ro.uow.edu.au/commpapers/3189
    Tam, C., &Oliveira, T. (2016). Performance impact of mobile banking: using the task-technology fit (TTF) approach. International Journal of Bank Marketing, 34(4), 434–457. https://doi.org/10.1108/IJBM-11-2014-0169
    Taylor, D. G., Voelker, T. A., &Pentina, I. (2011). Mobile Application Adoption by Young Adults: A Social Network Perspective (Vol. 6). Retrieved from http://digitalcommons.sacredheart.edu/wcob_fac/1
    Turban, E., &King, D. (2003). Introduction to e-commerce. Prentice Hall.
    Venkatesh, Morris, Davis, &Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540
    Vessey, I. (1991). Cognitive Fit: A Theory-Based Analysis of the Graphs Versus Tables Literature. Decision Sciences, 22(2), 219–240. https://doi.org/10.1111/j.1540-5915.1991.tb00344.x
    Zhou, S., Chen, D., Cai, W., Luo, L., Yoke, M., Low, H., …Hamilton, B. D. (2010). Crowd Modeling and Simulation Technologies. ACM Transactions on Modeling and Computer Simulation. https://doi.org/10.1145/1842722.1842725

    網路資料
    1. Digitalreport:https://digitalreport.wearesocial.com/
    2. Statista:https://www.statista.com/statistics/251096/fastest-growing-shopping-app-categories/
    3. Inside:https://www.hksilicon.com/articles/1207073
    4. Deloitte. (2017, December) Global mobile consumer survey 2017: Trends from around the world. Deloitte. [Online]. Available: https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Technology-Media-Telecommunications/gx-deloitte-tmt-global-mobile-consumer-trends-report-first-edition.pdf
    5. 資策會產業情報研究所(MIC)(2016):行動購物消費者調查。台北市:資策會產業情報研究所(MIC)https://mic.iii.org.tw/IndustryObservations_PressRelease02.aspx?sqno=489
    6. Upwork:https://www.upwork.com/hiring/for-clients/technology-needed-to-build-shopping-app/
    7. Designhu:https://www.design-hu.com/web-news/moblie-website.html
    8. App Annie:https://www.appannie.com/en/
    9. Sea:https://www.seagroup.com/home

    無法下載圖示 校內:2024-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE