| 研究生: |
張祖郡 Chang, Tsu-Chun |
|---|---|
| 論文名稱: |
我國建置大型儲能系統之技術經濟分析 Techno-economic Analysis of Large-scale Energy Storage System in Taiwan |
| 指導教授: |
吳榮華
Wu, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 儲能系統 、技術經濟分析 、蒙地卡羅模擬法 |
| 外文關鍵詞: | Energy Storage System, Techno-economic Analysis, Monte Carlo Simulation Method |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著環保意識興起,世界各國紛紛進行能源轉型,推廣使用再生能源代替傳統能源,以減少溫室氣體排放並增加本土能源供給。我國的目標是在2025年時達到再生能源發電占發電總量20%。與傳統能源相比,再生能源(例如:太陽能和風能)發電通常不穩定且具間歇性,太陽輻照度和風速可在數小時或數天內劇烈變化,而儲能系統應用功能多,其中之一是能處理再生能源發電間歇性問題,有效穩定電力供應。
本研究參考國內外儲能系統和技術經濟分析相關文獻資料,開發儲能技術經濟分析系統。研究中使用Access 2016建立儲能系統資料庫,應用Excel 2016建立技術經濟分析模組和使用者介面,並利用VBA (Visual Basic for Applications)連接資料庫、技術經濟分析模組和使用者介面,將資料庫進行儲能系統技術經濟分析,並運用蒙地卡羅模擬法(Monte Carlo Simulation method)使技術經濟分析結果更加精確。
研究結果顯示折現率大小影響儲能系統之均化成本值但不影響排序,儲能系統均化成本由低至高依序為鈉離子電池(鈉氯化鎳)、鈉離子電池(鈉硫)、鋰離子電池(NCA)、鋰離子電池(NMC/LMO)、鋰離子電池(LFP)、液流電池(釩)、鋰離子電池(LTO)、液流電池(鋅溴)及飛輪;儲能系統之效益包含發電系統應用、電力輔助服務和社會效益…等,本研究嘗試估算本土化之儲能系統效益,但依目前條件僅「電價套利」、「不斷電系統」與「碳減排效益」為符合國情之收益估算方式,本研究依據上述效益設定三種情境進行技術經濟分析,分析結果顯示依目前估算效益之方式而言,建置儲能系統尚不具經濟效益,若能降低儲能系統之年變動成本並提高使用年限方能還本。
In response to the rising of environmental awareness, countries around the world have been making energy transformations, such as promoting renewable energy to reduce greenhouse gas emissions and to increase local energy supply. Taiwan government set the policy goal of reaching 20 % of renewable energy generation in total power generation by 2025. Renewable energies (e.g. solar and wind) are unstable and intermittent. Solar irradiance and wind speed could change drastically in hours or days and thus influence the rate of power generation. One of the application of energy storage system (ESS) is to eliminate the intermittence of renewable energy and to stabilize the power supply.
This study established a techno-economic analysis module for energy storage system. Access 2016 was used to build the energy storage system database, and Excel 2016 was utilized to create the technical and economic analysis module and user interface. Visual Basic for Applications (VBA) was applied to connect the database, technical and economic analysis module and user interface. Monte Carlo Simulation method will be introduced so as to enhance the accuracy of the techno-economic analysis.
The results show that the discount rate affects the value of levilized cost but does not affect the sequence. The levelized cost of energy storage system from low to high are sodium-ion battery(NaNiCl2), sodium-ion battery (NaS), lithium-ion battery (NCA), lithium-ion battery (NMC/LMO), lithium-ion battery (LFP), flow battery (V), lithium-ion battery (LTO), flow battery (ZnBr) and flywheel. The benefit of storage including bulk energy services, ancillary services, social benefit…etc. This study tries to estimate the benefit of energy storage system in Taiwan, including arbitrage, uninterruptable power system and carbon emissions. This study set three scenarios to execute techno-economic analysis. The cost-benefit for building the energy storage system is significantly affected by the methods applied when quantifying the benefit, the discount rate, and service life.
中文部分:
1. 毛良虎 (2016),技術經濟學,大陸:北京大學出版社。
2. 台灣電力公司 (2018),電價表,台灣電力公司。
https://www.taipower.com.tw/upload/238/2018070210412196443.pdf
3. 白子玄與邱裕鈞 (2017),預約抽籤式之鐵路訂票尋優演算法,運輸學刊,29(3),281-310。
4. 李葆文 (2016),似非而是--創新思維下的設備管理,中國:冶金工業出版社。
5. 李馨 (2016),資料庫系統管理與實作:Access+Excel 商務應用(2016版), 臺灣:博碩文化。
6. 吳彥儒(2015),重新認識我國推廣再生能源的效益與代價,台灣經濟研究月刊,38(11),108-115。
7. 卓金和與孫廷瑞 (2013),我國 2020 年主要發電技術之均化成本估算,行政院原子能委員會核能研究所,網址:http://eip.iner.gov.tw/msn.aspx?datatype=YW5hbHlzaXM=&id=MzE=。
8. 施威銘研究室 (2011),資料庫理論與實務:使用Access 2010,臺灣:旗標科技股份有限公司。
9. 孫麗萍 (2013),技術經濟分析(第2版),中國: 科學出版社。
10. 袁正達、葛復光、孫廷瑞、卓金和與柴蕙質 (2014),各國核能發電均化成本之比較,行政院原子能委員會核能研究所,網址:http://eip.iner.gov.tw/msn.aspx?datatype=YW5hbHlzaXM=&id=Mjk=。
11. 徐世輝 (2013),應用統計學(第四版),臺灣:前程文化總經銷。
12. 張亞清、張榮芳與陳泳志 (2018),使用蒙地卡羅模擬法進行虛擬電廠長期運轉效能評估之研究,正修學報,頁27-41。
13. 黃郁青 (2018),儲能設施是否可以負擔?,行政院原子能委員會核能研究所,網址:http://eip.iner.gov.tw/msn.aspx?datatype=YW5hbHlzaXM=&id=MTYy。
14. 楊靜與鄢飛 (2018),企業管理與技術經濟分析,中國: 天津大學出版社。
15. 董凱、江輝、黃澤榮與鐘浩 (2010),運用成本效益分析的風/柴/儲能系統規劃方法,電力系統及其自動化學報,22(3),67-72。
16. 經濟部能源局再生能源資訊網 (2017),綠能科技產業創新推動方案,網址:https://www.re.org.tw/information/more.aspx?cid=192&id=769。
17. 經濟部能源局 (2019),能源局統計月報,經濟部能源局。
18. 劉玉章、曾育貞、呂永方、沈錦昌與鍾人傑 (2015),電網級儲能技術研發現況與進度,臺灣能源期刊,2(2),169-190。
19. 冀晨輝與吳丹 (2018),技術經濟學,中國: 河海大學出版社。
20. 鍾明展 (2016),醫院新舊工程不斷電系統案例比較探討,朝陽科技大學營建工程系碩士論文。
21. 魏華洲 (2014),電網儲能技術應用潛力,行政院原子能委員會核能研究所,網址:https://km.twenergy.org.tw/KnowledgeFree/knowledge_more?id=1146。
22. 關曉慧與呂躍剛 (2011),間歇性可再生能源發電中的儲能技術研究,能源與節能,2,56-60。
英文部分:
1. Abdon, A., Zhang, X. J., Parra, D., Patel, M. K., Bauer, C. & Worlitschek, J. (2017), Techno-economic and environmental assessment of stationary electricity storage technologies for different time scales, Energy, 139, 1173-1187.
2. Akhil, A. A., Huff, G., Currier, A. B., Hernandez, J., Bender, D. A., Kaun, B. C., Rastler, D. M., Chen, S. B., Cotter, A. L., Bradshaw, D. T., Gauntlett, W. D., Eyer, J., Olinsky-Paul, T., Ellison, M. & Schoenung, S. (2016), DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA, Sandia National Laboratories.
3. https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2016/169180.pdf
4. Andika, R., Kim, Y., Yoon, S. H., Kim, D. H., Choi, J. S. & Lee, M. (2017), Techno-economic assessment of technological improvements in thermal energy storage of concentrated solar power, Solar Energy, 157, 552-558.
5. Ardani, K., O'Shaughnessy, E., Fu, R., McClurg, C., Huneycutt, J. & Margolis, R. (2017), Installed Cost Benchmarks and Development Barriers for Residential Solar Photovoltaics with Energy Storage: Q1 2016, National Renewable Energy Laboratory.
https://www.nrel.gov/docs/fy17osti/67474.pdf
6. Argyrou, M. C., Christodoulides, P. & Kalogirou, S. A. (2018), Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications, Renewable and Sustainable Energy Reviews, 94, 804-821.
7. Atherton, J., Sharma, R. & Salgado, J. (2017), Techno-economic analysis of energy storage systems for application in wind farms, Energy, 135, 540-552.
8. Bhattacharya, M., Paramati, S. R., Ozturk, I. & Bhattacharya, S. (2016), The effect of renewable energy consumption on economic growth: Evidence from top 38 countries, Applied Energy, 162, 733-741.
9. Cali, U., Erdogan, N., Kucuksari, S. & Argin, M. (2018), Techno-economic analysis of high potential offshore wind farm locations in Turkey, Energy Strategy Reviews, 22, 325-336.
10. Caralis, G., Christakopoulos, T., Karellas, S. & Gao, Z. (2019), Analysis of energy storage systems to exploit wind energy curtailment in Crete, Renewable and Sustainable Energy Reviews, 103, 122-139.
11. Comodi, G., Carducci, F., Sze, J. Y., Balamurugan, N. & Romagnoli, A. (2017), Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies, Energy, 121, 676-694.
12. Electric Power Research Institute (2013), Cost-Effectiveness of Energy Storage in California, Electric Power Research Institute.
http://large.stanford.edu/courses/2013/ph240/cabrera1/docs/3002001162.pdf
13. Eyer, J. & Corey, G. (2010), Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide, Sandia National Laboratories.
14. https://www.sandia.gov/ess-ssl/publications/SAND2010-0815.pdf
15. Gu, Y., Zhang, X., Are Myhren, J., Han, M., Chen, X. & Yuan, Y. (2018), Techno-economic analysis of a solar photovoltaic/thermal (PV/T) concentrator for building application in Sweden using Monte Carlo method, Energy Conversion and Management, 165, 8-24.
16. IEA (2014), Technology Roadmap: Energy Storage, International Energy Agency.
https://www.iea.org/publications/freepublications/publication/TechnologyRoadmapEnergystorage.pdf
17. IEA (2017), World Energy Balances 2017, International Energy Agency.
18. IRENA (2017), Electricity Storage and Renewables: Costs and Markets to 2030, International Renewable Energy Agency.
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Oct/IRENA_Electricity_Storage_Costs_2017.pdf
19. Islam, M. T., Huda, N. & Saidur, R. (2019), Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia, Renewable Energy, 140, 789-806.
20. Kapila, S., Oni, A. O. & Kumar, A. (2017), The development of techno-economic models for large-scale energy storage systems, Energy, 140, 656-672.
21. KEMA (2012), ES-SelectTM Documentation and User’s Manual, KEMA.
https://www.sandia.gov/ess-ssl/ESSelectUpdates/ES-Select_Documentation_and_User_Manual-VER_2-2013.pdf
22. Laurischkat, K. & Jandt, D. (2018), Techno-economic analysis of sustainable mobility and energy solutions consisting of electric vehicles, photovoltaic systems and battery storages, Journal of Cleaner Production, 179, 642-661.
23. Lazard (2016), Lazard’s Levelized Cost of Storage Analysis-Version 2.0, Lazard.
https://www.lazard.com/media/438042/lazard-levelized-cost-of-storage-v20.pdf
24. Lazard (2017), Lazard’s Levelized Cost of Storage Analysis-Version 3.0, Lazard.
https://www.lazard.com/media/450338/lazard-levelized-cost-of-storage-version-30.pdf
25. Lazard (2018), Lazard’s Levelized Cost of Storage Analysis-Version 4.0, Lazard.
https://www.lazard.com/media/450774/lazards-levelized-cost-of-storage-version-40-vfinal.pdf
26. Li, Q., Tehrani, S. S. M. & Taylor, R. A. (2017), Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage, Energy, 121, 220-237.
27. Lin, L., Shah, A., Keener, H. & Li, Y. (2019), Techno-economic analyses of solid-state anaerobic digestion and composting of yard trimmings, Waste Management, 85, 405-416.
28. Lorenzi, G., da Silva Vieira, R., Santos Silva, C. A. & Martin, A. (2019), Techno-economic analysis of utility-scale energy storage in island settings, Journal of Energy Storage, 21, 691-705.
29. Mankiw, G. (2014),經濟學原理(四版,王銘正譯),台灣:高立圖書。(原著第七版出版於2014年)
30. Nikolaidis, P. & Poullikkas, A. (2018), Cost metrics of electrical energy storage technologies in potential power system operations, Sustainable Energy Technologies and Assessments, 25, 43-59.
31. Nolting, L. & Praktiknjo, A. (2019), Techno-economic analysis of flexible heat pump controls, Applied Energy, 238, 1417-1433.
32. Park, C. S. (2016), Contemporary Engineering Economics(Sixth ed.&Global ed.), England: Pearson.
33. Pillot, B., de Siqueira, S. & Dias, J. B. (2018), Grid parity analysis of distributed PV generation using Monte Carlo approach: The Brazilian case, Renewable Energy, 127, 974-988.
34. Rohit, A. K. & Rangnekar, S. (2017), An overview of energy storage and its importance in Indian renewable energy sector: Part II – energy storage applications, benefits and market potential, Journal of Energy Storage, 13, 447-456.
35. Schoenung, S. M. (2011), Energy Storage System Cost Update, Sandia National Laboratories.
https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2011/112730.pdf
36. Schoenung, S. M. & Hassenzahl, W. V. (2003), Long- vs. Short-Term Energy Storage Technologies Analysis, Sandia National Laboratories.
https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2003/032783.pdf
37. Sidhu, A. S., Pollitt, M. G. & Anaya, K. L. (2018), A social cost benefit analysis of grid-scale electrical energy storage projects: A case study, Applied Energy, 212, 881-894.
38. Thaker, S., Olufemi Oni, A. & Kumar, A. (2017), Techno-economic evaluation of solar-based thermal energy storage systems, Energy Conversion and Management, 153, 423-434.
39. Vossos, V., Gerber, D., Bennani, Y., Brown, R. & Marnay, C. (2018), Techno-economic analysis of DC power distribution in commercial buildings, Applied Energy, 230, 663-678.
40. Wang, L., Pan, B., Gao, Y., Li, C., Ye, J., Yang, L. & Zhang, X. (2019), Efficient membrane microalgal harvesting: Pilot-scale performance and techno-economic analysis, Journal of Cleaner Production, 218, 83-95.
41. Xie, C. P., Hong, Y., Ding, Y. L., Li, Y. L. & Radcliffe, J. (2018), An economic feasibility assessment of decoupled energy storage in the UK: With liquid air energy storage as a case study, Applied Energy, 225, 244-257.
42. Zafeiriou, E., Arabatzis, G. & Koutroumanidis, T. (2011), The fuelwood market in Greece: An empirical approach, Renewable and Sustainable Energy Reviews, 15(6), 3008-3018.
43. Zaroni, H., Maciel, L. B., Carvalho, D. B. & Pamplona, E. d. O. (2019), Monte Carlo Simulation approach for economic risk analysis of an emergency energy generation system, Energy, 172, 498-508.
44. Zhu, K., Li, X., Campana, P. E., Li, H. & Yan, J. (2018), Techno-economic feasibility of integrating energy storage systems in refrigerated warehouses, Applied Energy, 216, 348-357.