簡易檢索 / 詳目顯示

研究生: 陳大宇
Chen, David Ta-Yu
論文名稱: 利用立方衛星群研究伽瑪射線物理以及開發用於未來高能物理實驗的粒子探測器
Study Gamma-Ray Physics by CubeSat Constellation and Development of Particle Detector for Future High Energy Physics Experiment
指導教授: 楊毅
Yang, Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 76
中文關鍵詞: GDM伽瑪射線閃爍體立方衛星
外文關鍵詞: GDM, Gamma ray, Scintillator, CubeSat
相關次數: 點閱:38下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 立方衛星的發展大大降低了太空任務的門檻,使得建造太空儀器變得更加容易實現。由立方衛星組成的衛星群可以測量一些太空事件的幾何特徵,例如地面伽馬射線閃光和短伽馬射線爆。立方衛星群的測量結果還可以與其他項目的探測器結合進行同步觀測。立方衛星群測量的解析度也高於單一探測裝置的測量解析度。

    我們自行開發了用於伽瑪射線瞬變事件觀測的伽瑪射線偵測器(Gamma-ray Detector Monitor, GDM)。它由四個LYSO-SiPM單元和六個BC408-SiPM單元組成。LYSO因其高密度和短衰減時間而被選用於伽馬射線觀測。我們使用鈉-22驗證了LYSO的伽馬射線可探測性,並使用GEANT4模擬分析了GDM的性能。為了開發可靠的立方衛星,我們與成公大學機械工程學系陳重德教授的團隊合作進行結構設計和機械測試。我們也使用GMAT模擬來估計立方衛星群的任務持續時間。在這篇論文中,我將展示GDM和立方衛星結構的設計細節。

    Due to the developement of CubeSat, building a space instrument is more achievable and affordable. A constellation constructed by CubeSat can measure the geometric characteristics of some space events such as Terrestrial Gamma-ray Flash (TGF) and short Gamma-Ray Burst (short GRB). And the measurement results from constellation can also be combined with simultaneously collected data from other projects. The resolution of measurement by constellation is also higher than that of single detection devices.

    We develope a Gamma-ray Detector Monitor (GDM) for the gamma-ray transient event observation by our self. It consists of four LYSO-SiPM units and six BC408-SiPM units. LYSO is chosen for gamma ray observation due to its high density and short decay time. We varified the gamma ray detectability of LYSO using Na22 and analyzed the performance of GDM with GEANT4 simulation. To develop a reliable CubeSat, we collaborated with Professor Chung-De Chen's group from NCKU Department of Mechanical Engineering for structure design and mechanical testing. We also estimated the mission duration of CubeSat constellation using GMAT simulation. In this thesis, I will demonstrate the detail design and performance of GDM and CubeSat structure.

    Abstract in Chinese i Abstract in English ii Acknowledgements iii Contents iv List of Tables vii List of Figures viii 1 Introduction 1 2 Gamma Rays in Space 2 2.1 Property of Gamma Rays 2 2.2 Short Gamma-Ray Burst 3 2.3 Terrestrial gamma-ray burst 4 3 CubeSat 7 3.1 Structure 7 3.2 Mechanical Simulation and Vibration Test 11 3.2.1 Modal Analysis 11 3.2.2 Vibration testing 12 3.2.3 Analysis 14 3.3 Subsystem 23 4 Gamma-ray Detector Monitor 24 4.1 GDM 24 4.1.1 Scintillator 25 4.1.2 SiPM 26 4.1.3 Structure 31 4.1.4 Readout Systems 35 4.1.5 Assembly 36 4.2 Simulation on GEANT4 39 4.2.1 Introduction of GEANT4 39 4.2.2 Simulation Setup 39 4.2.3 Results of simulation 43 4.3 Testing 48 4.3.1 Experimental setups 48 4.3.2 Test Result 50 5 Mission Duration 53 5.1 CubeSat constellation 53 5.2 Orbital Lifetime 54 5.2.1 Introduction of GMAT 54 5.2.2 Calculation configuraion 54 5.3 Ability of Detection 57 5.3.1 Constellation Deployment 57 5.3.2 Analysis 57 6 Conclusion and Future Work 60 6.1 Conclusion 60 6.2 Future Works 60 References 61

    [1] Inan, U. S., Cohen, M. B., Said, R. K., Smith, D. M., and Lopez, L. I., “Terrestrial gamma ray flashes and lightning discharges,” Geophysical Research Letters 33(18) (2006).
    [2] Cummer, S. A., Zhai, Y., Hu, W., Smith, D. M., Lopez, L. I., and Stanley, M. A., “Measurements and implications of the relationship between lightning and terrestrial gamma ray flashes,” Geophysical Research Letters 32(8) (2005).
    [3] Dwyer, J. R., “Source mechanisms of terrestrial gamma-ray flashes,” Journal of Geophysical Research 113(D10) (2008).
    [4] “batse - gamma ray astrophysics at the nsstc - nasa,” (accessed Jun. 11 2024). https://gammaray.nsstc.nasa.gov/batse/.
    [5] “Rhessi web site,” (accessed Jun. 11 2024). https://hesperia.gsfc.nasa.gov/rhessi3/.
    [6] “The fermi gamma-ray space telescope,” (accessed Jun. 11 2024). https://fermi.gsfc.nasa.gov/.
    [7] “Atmosphere-space interactions monitor (asim) - birkeland centre for space science,” (accessed May. 15 2024). https://birkeland.uib.no/atmosphere-space-interactions-monitor-asim/.
    [8] “Once upon a time in a thunderstorm,” (accessed Sep. 15 2023). https://phys.org/news/2018-04-thunderstorm.html.
    [9] “Gamma-ray production and absorption processes,” (accessed Apr. 24 2024). https://www.mpe.mpg.de/~rod/papers/Universe_2_Processes.pdf.
    [10] Ertley, C., “Studying the polarization of hard x-ray solar flares with the gamma ray polarimeter experiment (grape),” (01 2014).
    [11] Xu, W., “Monte carlo simulation of terrestrial gamma-ray flashes produced by stepping lightning leaders,” (2015).
    [12] Stadnichuk, E., Svechnikova, E., Nozik, A., Zemlianskaya, D., Khamitov, T., Zelenyy, M., and Dolgonosov, M., “Relativistic runaway electron avalanches within complex thunderstorm electric field structures,” Journal of Geophysical Research: Atmospheres 126(24) (2021).
    [13] Alnussirat, S. T., Christian, H. J., Fishman, G. J., Burchfield, J., and Cherry, M. L., “Simultaneous spacebased observations of terrestrial gamma-ray flashes and lightning optical emissions: Investigation of the terrestrial gamma-ray flash production mechanisms,” Phys. Rev. D 100, 083018 (Oct 2019).
    [14] Inan, U. S., Cohen, M. B., Said, R. K., Smith, D. M., and Lopez, L. I., “Discovery of intense gamma-ray flashes of atmospheric origin,” Science 264(5163), 1313–1316 (1994).
    [15] Neubert, T., Østgaard, N., Reglero, V., Chanrion, O., Heumesser, M., Dimitriadou, K., Christiansen, F., Budtz-Jørgensen, C., Kuvvetli, I., Rasmussen, I. L., Mezentsev, A., Marisaldi, M., Ullaland, K., Genov, G., Yang, S., Kochkin, P., Navarro-Gonzalez, J., Connell, P. H., and Eyles, C. J., “A terrestrial gamma-ray flash and ionospheric ultraviolet emissions powered by lightning,” Science 367(6474), 183–186 (2020).
    [16] Maiorana, C., Marisaldi, M., Füllekrug, M., Soula, S., Lapierre, J., Mezentsev, A., Skeie, C. A., Heumesser, M., Chanrion, O., Østgaard, N., Neubert, T., and Reglero, V., “Observation of terrestrial gamma-ray flashes at mid latitude,” Journal of Geophysical Research: Atmospheres 126(18) (2021).
    [17] “Cubesat design specification,” (accessed Sep. 8 2023). https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf.
    [18] “Ansys mechanical,” (accessed Apr. 5 2024). https://www.ansys.com/products/structures/ansys-mechanical.
    [19] Leo, W. R., [Techniques for Nuclear and Particle Physics Experiments: a how-to approach], Springer Science & Business Media (2012).
    [20] “Ce lyso crystal, scintillators of lyso,” (accessed Sep. 21 2023). https://www.epic-crystal.com/scintillation-crystals/lysoce-crystal.html.
    [21] “Bc-400, bc-404, bc-408, bc-412, bc-416.” Crystals (accessed Mar. 2 2023). https://luxiumsolutions.com/radiation-detection-scintillators/plastic-scintillators/bc400-bc404-bc408-bc412-bc416.
    [22] Jackson, C., Wall, L., O’Neill, K., McGarvey, B., and Herbert, D., “Ultra-low noise and exceptional uniformity of sensl c-series sipm sensors,” in [Optical Components and Materials XII], 9359, 194–205, SPIE (2015).
    [23] “Silicon photomultipliers(sipm), low-noise, blue-sensitive c-series sipm sensors,” (accessed Sep. 21 2023). https://www.onsemi.com/pdf/datasheet/microc-series-d.pdf.
    [24] “Cadmesh,” (accessed Feb. 4 2024). https://github.com/christopherpoole/CADMesh.
    [25] “General mission analysis tool (gmat) goals,” (accessed May. 25 2024). https://opensource.gsfc.nasa.gov/projects/GMAT/index.php.
    [26] Vallado, D. A. and Finkleman, D., “A critical assessment of satellite drag and atmospheric density modeling,” Acta Astronautica 95, 141–165 (2014).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE