| 研究生: |
徐國淦 Hsu, Kao-Kan |
|---|---|
| 論文名稱: |
以化學浴沉積法製備CdS/TiO2光陽極進行光電化學產氫之研究 Photoelectrochemical Hydrogen Generation with CdS/TiO2 Photoanodes Prepared by Chemical Bath Deposition |
| 指導教授: |
陳慧英
Chen, Huey-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 硫化鎘 、二氧化鈦 、化學浴沉積 、光電化學 、產氫 |
| 外文關鍵詞: | cadmium sulfide, titanium dioxide, chemical bath deposition, photoelectrochemical, hydrogen generation |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係以化學浴沉積法(CBD)製備CdS/TiO2光陽極,並以光電化學法(PEC)探討其光電化學反應活性及產氫速率。實驗中,首先以陽極氧法製備二氧化鈦奈米管陣列,再以硝酸鎘(Cd(NO3)2)及硫化鈉(Na2S)作為前驅鹽,將硫化鎘沉積於二氧化鈦奈米管表面,再經煅燒即可得CdS/TiO2。文中改變製備條件包括:煅燒氣氛及溫度,沉積法之含浸時間、次數、溶劑種類及UV光照等變因,探討其對CdS/TiO2表面形態、晶相結構、能隙及光活性等性質之影響,並進一步探討其產氫速率之結果。
實驗結果顯示,在空氣中煅燒所得CdS/TiO2光陽極之光活性較氮氣中煅燒者為佳。經300 oC煅燒後,CdS呈閃鋅礦(zinc blende)結構,並摻有少量纖鋅礦(wurtzite)晶態。當CBD沉積條件為:依序含浸於硝酸鎘、硫化鈉水溶液中20分鐘、反覆13次,所得之CdS(W)/TiO2光陽極具最佳光活性。經PEC測試,以Xenon燈(I0 = 100 mW/cm2)照射光陽極,採用0.25 M Na2S+0.35 M Na2SO3作為電解液,可得飽和光電流值6.163 mA/cm2,其最大光電化學轉換效率為4.45 %;另以雙槽型PEC系統測試其產氫速率高達1.49 ml/cm2-hr。
本研究進一步探討含浸程序之溶劑效應,結果發現以水配製硝酸鎘前驅鹽溶液所製備之CdS(W)/TiO2光陽極,其光活性優於以酒精(95%)為溶劑所得之CdS(A)/TiO2光陽極。經特性分析發現,於不同含浸次數下,其CdS(W)/TiO2光陽極表面之CdS粒徑均較CdS(A)/TiO2為大,但其承載CdS含量較多,且光陽極能隙較小。PEC實驗結果顯示CdS(W)/TiO2光陽極具較佳之光活性。另外,含浸中同時照射UV光(λmax=253.7 nm)下,所得CdS(UV)/TiO2光陽極,經分析發現照射UV光確有助於鎘離子吸附於TiO2表面,但卻會造成CdS發生團聚,而致光活性較CdS(W)/TiO2為差。
In this study, the CdS/TiO2 photoanodes were prepared by chemical bath deposition (CBD) technique. The photoactivity of CdS/TiO2 photoanodes and hydrogen generation were studied via photoelectrochemical (PEC) process. Experimentally, the self-assembled TiO2 nanotube arrays were formed by electrochemical anodization process, then the TiO2 nanotubes arrays were sequentially immersed in Cd(NO3)2 and Na2S solution several times to fabricate CdS/TiO2 photoanode. The experimental conditions including calcination atmosphere and temperature, immersion time, number of immersion, solvent, and UV illumination were investigated. Besides, the properties of CdS/TiO2 photoanodes such as surface morphology, crystalline structure and band gap were discussed. The photoactivities of CdS/TiO2 photoanodes and hydrogen generation via photoelectrochemical splitting of water were also studied.
From the experimental results, the photoactivity of photoanode calcined in air atmosphere was better than that in nitrogen atmosphere. The CdS grains calcined at 300 oC was zinc blende structure with small quantity of wurtzite. From the PEC results, it revealed that the CdS/TiO2 sample with the highest photoactivity was obtained at immersing time of 20min and repeating 13 cycles. The saturation current density was 6.163 mA/cm2 and the maximum photoelectrochemical conversion was 4.45 % in the PEC system under Xenon lamp (I0 = 100 mW/cm2) illumination. The hydrogen generation rate for the sample was 1.49 ml/cm2-hr measured with a double-tank PEC reactor.
The solvent effect in CBD procedure was investigated in advance. It was found that the photoactivities of CdS(W)/TiO2 prepared starting from the aqueous Cd(NO3)2 solution were higher than those of prepared in ethanol(95%) solution. From the result of characterization, as compared with CdS(A)/TiO2, the CdS(W)/TiO2 showed bigger particle size. However, the CdS amount in CdS(W)/TiO2 sample was relatively large, and the band gap was smaller. On the other hand, the photoactivity of CdS(UV)/TiO2 which prepared under UV (λmax=253.7 nm) illumination somewhat reduced. In the presence of UV light, it resulted in increase of the Cd2+ adsorption on the TiO2 surface. However, it also accompanied with aggregation of CdS.
1. J. Nowotny, C.C. Sorrell, L.R. Sheppard and T. Bak, "Solar-hydrogen: Environmentally safe fuel for the future." Int. J. Hydrog. Energy, 30, 521-544 (2005).
2. T. Bak, J. Nowotny, M. Rekas and C.C. Sorrell, "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects." Int. J. Hydrog. Energy, 27, 991-1022 (2002).
3. A. Fujishima and K. Honda, " Electrochemical photolysis of water a semiconductor electrode." Nature, 238, 36-38 (1972).
4. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese and C.A. Grimes, "Enhanced photocleavage of water using titania nanotube arrays." Nano Lett., 5, 191-195 (2005).
5. X. Quan, S. Yang, X. Ruan and H. Zhao, "Preparation of titania nanotubes and their environmental applications as electrode." Environ. Sci. Technol., 39, 3770 (2005).
6. A. Nozik, "Photoelectrolysis of water using semiconducting TiO2 crystals." Nature, 257, 383-386 (1975).
7. O.N. Srivastava, R.K. Karn and M. Misra, "Semiconductor-septum photoelectrochemical solar cell for hydrogen production." Int. J. Hydrog. Energy, 25, 495-503 (2000).
8. T. Bak, J. Nowotny, M. Rekas and C.C. Sorrell, "Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions." Int. J. Hydrog. Energy, 27, 19-26 (2002).
9. J. Akikusa and S.U.M. Khan, "Photoresponse and AC impedance characterization of n-TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell." Int. J. Hydrog. Energy, 22, 875-882 (1997).
10. H. Irie, Y. Watanabe and K. Hashimoto, "Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst." Chem. Lett., 32, 772-773 (2003).
11. J.H. Park, S. Kim and A.J. Bard, "Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting." Nano Lett., 6, 24-28 (2006).
12. C. Burda, Y.B. Lou, X.B. Chen, A.C.S. Samia, J. Stout and J.L. Gole, "Enhanced nitrogen doping in TiO2 nanoparticles." Nano Lett., 3, 1049-1051 (2003).
13. G.R. Torres, T. Lindgren, J. Lu, C.G. Granqvist and S.E. Lindquist, "Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation." J. Phys. Chem. B, 108, 5995-6003 (2004).
14. T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto and S. Sugihara, "Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping." Appl. Catal. B-Environ., 42, 403-409 (2003).
15. T. Yamaki, T. Umebayashi, T. Sumita, S. Yamamoto, M. Maekawa, A. Kawasuso and H. Itoh, "Fluorine-doping in titanium dioxide by ion implantation technique." Nucl. Instrum. Methods Phys. Res., Sect. B, 206, 254-258 (2003).
16. S. Chen, M. Paulose, C. Ruan, G. Mor, O. Varghese, D. Kouzoudis and C. Grimes, "Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: Preparation, characterization, and application to photoelectrochemical cells." J. Photochem. Photobiol., A, 177, 177-184 (2006).
17. W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen and L.M. Peng, "CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes." J. Am. Chem. Soc., 130, 1123-1125 (2008).
18. G.K. Mor, H.E. Prakasam, O.K. Varghese, K. Shankar and C.A. Grimes, "Vertically oriented Ti-Fe-O nanotube array films: Toward a useful material architecture for solar spectrum water photoelectrolysis." Nano Lett., 7, 2356-2364 (2007).
19. S. Sumikura, S. Mori, S. Shimizu, H. Usami and E. Suzuki, "Photoelectrochemical characteristics of cells with dyed and undyed nanoporous p-type semiconductor CuO electrodes." J. Photochem. Photobiol., A, 194, 143-147 (2008).
20. G.K. Mor, O.K. Varghese, R.H.T. Wilke, S. Sharma, K. Shankar, T.J. Latempa, K.S. Choi and C.A. Grimes, "p-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation." Nano Lett., 8, 1906-1911 (2008).
21. A. Steinfeld, "Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions." Int. J. Hydrog. Energy, 27, 611-619 (2002).
22. H. Ohya, M. Yatabe, M. Aihara, Y. Negishi and T. Takeuchi, "Feasibility of hydrogen production above 2500 K by direct thermal decomposition reaction in membrane reactor using solar energy." Int. J. Hydrog. Energy, 27, 369-376 (2002).
23. A. J. Appleby, "Efficiencies of electrolytic and thermochemical hydrogen production" Nature, 253, 257-258 (1975).
24. T. Kodama, Y. Kondoh, R. Yamamoto, H. Andou and N. Satou, "Thermochemical hydrogen production by a redox system of ZrO2-supported Co (II)-ferrite." Sol. Energy, 78, 623-631 (2005).
25. J. Mavroides, D. Tchernev, J. Kafalas and D. Kolesar, "Photoelectrolysis of water in cells with TiO2 anodes." Mater. Res. Bull., 10, 1023-1030 (1975).
26. U. Diebold, "The surface science of titanium dioxide." Surf. Sci. Rep., 48, 53-229 (2003).
27. A. Mills and S. LeHunte, "An overview of semiconductor photocatalysis." J. Photochem. Photobiol. A-Chem., 108, 1-35 (1997).
28. C. Yeh, Z. Lu, S. Froyen and A. Zunger, "Zinc-blende and wurtzite polytypism in semiconductors." Phys. Rev. B, 46, 10086-10097 (1992).
29. R.B. King, "Encyclopedia of inorganic chemistry "2nd edition, published by Wiley (2005).
30. H. Youn, S. Baral and J. Fendler, "Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed cadmium sulfide and zinc sulfide semiconductor particles: preparation and utilization for photosensitized charge separation and hydrogen generation." J. Phys. Chem., 92, 6320-6327 (1988).
31. D. Jing and L. Guo, "A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure." J. Phys. Chem. B, 110, 11139-11145 (2006).
32. Y.J. Shen and Y.L. Lee, "Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications." Nanotechnology, 19, (2008).
33. Y.L. Lee and C.H. Chang, "Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells." J. Power Sources, 185, 584-588 (2008).
34. Y. Tachibana, H.Y. Akiyama, Y. Ohtsuka, T. Torimoto and S. Kuwabata, "CdS quantum dots sensitized TiO2 sandwich type photoelectrochemical solar cells." Chem. Lett., 36, 88-89 (2007).
35. T. Vossmeyer, L. Katsikas, M. Giersig, I. Popovic, K. Diesner, A. Chemseddine, A. Eychmuller and H. Weller, "CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift." J. Phys. Chem., 98, 7665-7673 (1994).
36. I. Gur, N. Fromer, M. Geier and A. Alivisatos, "Air-stable all-inorganic nanocrystal solar cells processed from solution." Science, 310, 462 (2005).
37. A. Samokhvalov, R. Gurney, M. Lahav and R. Naaman, "Electronic Properties of Hybrid Organic/Inorganic Langmuir- Blodgett Films Containing CdS Quantum Particles." J. Phys. Chem. B, 106, 9070-9078 (2002).
38. A. Samokhvalov, "Charge transfer between a gold substrate and CdS nanoparticles on self-assembled monolayer of 11-mercaptoundecanoic acid on Au(111) substrate" Langmuir, 18, 4495 (2002).
39. M. Sastry, M. Rao and K. Ganeshs, "Electrostatic assembly of nanoparticles and biomacromolecules." Acc. Chem. Res, 35, 847-855 (2002).
40. J.P. Enriguez and X. Mathew, "Influence of the thickness on structural, optical and electrical properties of chemical bath deposited CdS thin films." Sol. Energy Mater. Sol. Cells, 76, 313-322 (2003).
41. C.J. Lin, Y.H. Yu and Y.H. Liou, "Free-standing TiO2 nanotube array films sensitized with CdS as highly active solar light-driven photocatalysts." Appl. Catal. B-Environ., 93, 119-125 (2009).
42. Y.G. Guo, J.S. Hu, H.P. Liang, L.J. Wan and C.L. Bai, "TiO2-based composite nanotube arrays prepared via layer-by-layer assembly." Adv. Funct. Mater., 15, 196-202 (2005).
43. J. Zhang, X. Zhang and L. Lei, "Modification of TiO2 nanotubes arrays by CdS and their photoelectrocatalytic hydrogen generation properties." Chin. Sci. Bull., 53, 1929-1932 (2008).
44. C. Chi, Y. Lee and H. Weng, "A CdS-modified TiO2 nanocrystalline photoanode for efficient hydrogen generation by visible light." Nanotechnology, 19, 125704 (2008).
45. Y. Lee, C. Chi and S. Liau, "CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell." Chem. Mater., 22, 922-927 (2010)
46. M. Radecka, M. Wierzbicka, S. Komornicki and M. Rekas, "Influence of Cr on photoelectrochemical properties of TiO2 thin films." Z. Phys. B: Condens. Matter, 348, 160-168 (2004).
47. M. Radecka, P. Sobas, M. Wierzbicka and M. Rekas, "Photoelectrochemical properties of undoped and Ti-doped WO3." Z. Phys. B: Condens. Matter, 364, 85-92 (2005).
48. A. Trenczek-Zaj c, M. Radecka and M. Rekas, "Photoelectrochemical properties of Nb-doped titanium dioxide." Z. Phys. B: Condens. Matter, 399, 55-59 (2007).
49. M. Radecka, A. Trenczek-Zajac, K. Zakrzewska and M. Rekas, "Effect of oxygen nonstoichiometry on photo-electrochemical properties of TiO2-x." J. Power Sources, 173, 816-821 (2007).
50. M. Paulose, G. Mor, O. Varghese, K. Shankar and C. Grimes, "Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays." J. Photochem. Photobiol., A, 178, 8-15 (2006).
51. M. Kitano, K. Iyatani, K. Tsujimaru, M. Matsuoka, M. Takeuchi, M. Ueshima, J. Thomas and M. Anpo, "The Effect of Chemical Etching by HF Solution on the Photocatalytic Activity of Visible Light-responsive TiO 2 Thin Films for Solar Water Splitting." Top. Catal., 49, 24-31 (2008).
52. Y. Su, S. Chen, X. Quan, H. Zhao and Y. Zhang, "A silicon-doped TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity." Appl. Surf. Sci., 255, 2167-2172 (2008).
53. Lu, N., X. Quan, J. Li, S. Chen, H. Yu and G. Chen, "Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability." J. Phys. Chem. C, 111, 11836–11842 (2007).
54. Y. Lei, G. Zhao, M. Liu, Z. Zhang, X. Tong and T. Cao, "Fabrication, Characterization, and Photoelectrocatalytic Application of ZnO Nanorods Grafted on Vertically Aligned TiO2 Nanotubes." J. Phys. Chem. C, 113, 19067-19076 (2009).
55. X. Yang, A. Wolcott, G. Wang, A. Sobo, R. Fitzmorris, F. Qian, J. Zhang and Y. Li, "Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting." Nano Lett, 9, 2331-2336 (2009).
56. Y. Shaban and S. Khan, "Surface grooved visible light active carbon modified (CM)-n-TiO2 thin films for efficient photoelectrochemical splitting of water." Chem. Phys., 339, 73-85 (2007).
57. Y. Shaban and S. Khan, "Visible light active carbon modified n-TiO2 for efficient hydrogen production by photoelectrochemical splitting of water." Int. J. Hydrog. Energy, 33, 1118-1126 (2008).
58. Y. Shaban and S. Khan, "Carbon modified (CM)-n-TiO2 thin films for efficient water splitting to H2 and O2 under xenon lamp light and natural sunlight illuminations." J. Solid State Electrochem., 13, 1025-1036 (2009).
59. D. Mardare, M. Tasca, M. Delibas and G. Rusu, "On the structural properties and optical transmittance of TiO2 rf sputtered thin films." Appl. Surf. Sci., 156, 200-206 (2000).
60. C. Lee, H. Chen and C. Jaing, "Effect of thermal annealing on the optical properties and residual stress of TiO2 films produced by ion-assisted deposition." Appl. Opt., 44, 2996-3000 (2005).
61. T. Nishide and F. Mizukami, "Effect of ligands on crystal structures and optical properties of TiO2 prepared by sol-gel processes." Thin Solid Films, 353, 67-71 (1999).
62. H. Lin, H. Kozuka and T. Yoko, "Preparation of TiO2 films on self-assembled monolayers by sol-gel method." Thin Solid Films, 315, 111-117 (1998).
63. S. Kim, M. Heo, S. Hahn, C. Lee, J. Joo, J. Kim, I. Yoo and E. Kim, "Optical and photocatalytic properties of Pt-photodeposited sol-gel TiO2 thin films." Mater. Lett., 59, 2059-2063 (2005).
64. Z.F. Yuan, B Li, J.L. Zhang, "Synthesis of TiO2 thin film by a modified sol-gel method and properties of the prepared films for photocatalyst", J. Sol-Gel Sci. Technol., 39, 249-253 (2006).
65. G. San Vicente, A. Morales and M. Gutierrez, "Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon." Thin Solid Films, 391, 133-137 (2001).
66. E. Halary, G. Benvenuti, F. Wagner and P. Hoffmann, "Light induced chemical vapour deposition of titanium oxide thin films at room temperature." Appl. Surf. Sci., 154, 146-151 (2000).
67. K.L. Siefering, and G.L. Griffin, "Growth kinetics of CVD TiO2: Influence of carrier gas", J. Electrochem. Soc., 137, 1206-1208 (1990).
68. H.S. Kim, D.C. Gilmer, S.A. Campbell and D.L. Polla, "Leakage current and electrical breakdown in metal-organic chemical vapor deposited TiO2 dielectrics on silicon substrates." Appl. Phys. Lett., 69, 3860-3862 (1996).
69. Y. Lei, L. Zhang and J. Fan, "Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3." Chem. Phys. Lett., 338, 231-236 (2001).
70. Q. Zhang, L Gao, J. Sun, and S. Zheng, "Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals", Chem. Lett., 5, 226-227 (2002).
71. S. Zhang, L. Peng, Q. Chen, G. Du, G. Dawson and W. Zhou, "Formation mechanism of H2Ti3O7 nanotubes." Phys. Rev. Lett., 91, 256103-256101 (2003).
72. A. Thorne, A. Kruth, D. Tunstall, J. Irvine and W. Zhou, "Formation, structure, and stability of titanate nanotubes and their proton conductivity." J. Phys. Chem. B, 109, 5439-5444 (2005).
73. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P.V. Kamat, "Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture." J. Am. Chem. Soc., 130, 4007-4015 (2008).
74. H.Y. Si, Z.H. Sun and H.L. Zhang, "Photoelectrochemical response from CdSe-sensitized anodic oxidation TiO2 nanotubes." Colloid Surf. A-Physicochem. Eng. Asp., 313, 604-607 (2008).
75. W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen and L.M. Peng, "CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes." J. Am. Chem. Soc., 130, 1123-1125 (2008).
76. Y.Y. Zhang, W.Y. Fu, H.B. Yang, Q. Qi, Y. Zeng, T. Zhang, R.X. Ge and G. Zou, "Synthesis and characterization of TiO2 nanotubes for humidity sensing." Appl. Surf. Sci., 254, 5545-5547 (2008).
77. G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko and C.A. Grimes, "A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination." J. Mater. Res., 19, 628-634 (2004).
78. O.K. Varghese, D.W. Gong, M. Paulose, K.G. Ong, E.C. Dickey and C.A. Grimes, "Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure." Adv. Mater., 15, 624-627 (2003).
79. V. Zwilling, M. Aucouturier and E. Darque-Ceretti, "Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach." Electrochim. Acta, 45, 921-929 (1999).
80. D. Gong, C. Grimes, O. Varghese, W. Hu, R. Singh, Z. Chen and E. Dickey, "Titanium oxide nanotube arrays prepared by anodic oxidation." J. Mater. Res., 16, 3331-3334 (2001).
81. Q. Cai, M. Paulose, O. Varghese and C. Grimes, "The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation." J. Mater. Res., 20, 230-236 (2005).
82. J. Macak, H. Tsuchiya and P. Schmuki, "High-aspect-ratio TiO2 nanotubes by anodization of titanium." Angew. Chem. Int. Ed., 44, 2100 (2005).
83. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Perrin and M. Aucouturier, "Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy." Surf. Interface Anal., 27, 629-637 (1999).
84. R. Beranek, H. Hildebrand and P. Schmuki, "Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes." Electrochem. Solid State Lett., 6, B12-B14 (2003).
85. J. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova and P. Schmuki, "Smooth anodic TiO2 nanotubes." Angew. Chem. Int. Ed., 44, 7463-7465 (2005).
86. Prakasam, H., K. Shankar, M. Paulose, O. Varghese and C. Grimes, "A new benchmark for TiO2 nanotube array growth by anodization." J. Phys. Chem. C, 111, 7235–7241 (2007).
87. J. Albu and P. Schmuki, "Towards ideal hexagonal self-ordering of TiO2 nanotubes." Phys. Status Solidi, 1, 181-183 (2007).
88. J. Choi, R. Wehrspohn, J. Lee and U. Gosele, "Anodization of nanoimprinted titanium: a comparison with formation of porous alumina." Electrochim. Acta, 49, 2645-2652 (2004).
89. Z. Su and W. Zhou, "Formation mechanism of porous anodic aluminium and titanium oxides." Adv. Mater., 20, 3663-3667 (2008).
90. F. Thebault, B. Vuillemin, R. Oltra, J. Kunze, A. Seyeux and P. Schmuki, "Modeling of Growth and Dissolution of Nanotubular Titania in Fluoride-Containing Electrolytes." Electrochem. Solid-State Lett., 12, C5 (2009).
91. K. Yasuda, J. Macak, S. Berger, A. Ghicov and P. Schmuki, "Mechanistic aspects of the self-organization process for oxide nanotube formation on valve metals." J. Electrochem. Soc., 154, C472 (2007).
92. A. Valota, D. LeClere, P. Skeldon, M. Curioni, T. Hashimoto, S. Berger, J. Kunze, P. Schmuki and G. Thompson, "Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes." Electrochim. Acta, (2009).
93. A. Jaroenworaluck, D. Regonini and C.R. Bowen, "Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte." J. Mater. Sci., 42, 6729-6734 (2007).
94. J.L. Tao, J.L. Zhao, C.C. Tang, Y.R. Kang and Y.X. Li, "Mechanism study of self-organized TiO2 nanotube arrays by anodization." New J. Chem., 32, 2164-2168 (2008).
95. J. Zhao, X. Wang, R. Chen and L. Li, "Fabrication of titanium oxide nanotube arrays by anodic oxidation." Solid State Commun., 134, 705-710 (2005).
96. J. Macak, H. Tsuchiya, L. Taveira, A. Ghicov and P. Schmuki, "Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions." J. Biomed. Mater. Res. A, 75, 928 (2005).
97. J. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer and P. Schmuki, "TiO2 nanotubes: Self-organized electrochemical formation, properties and applications." Curr. Opin. Solid State Mater. Sci., 11, 3-18 (2007).
98. T. Bak, J. Nowotny, M. Rekas and C.C. Sorrell, "Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions." Int. J. Hydrog. Energy, 27, 19-26 (2002).
99. A. Nozik and R. Memming, "Physical Chemistry of Semiconductor- Liquid Interfaces." J. Phys. Chem, 100, 13061-13078 (1996).
100. A. Bott, "Electrochemistry of semiconductors." Curr. Sep., 17, 87-92 (1998)..
101. B. Parkinson, "On the efficiency and stability of photoelectrochemical devices." Acc. Chem. Res, 17, 431-437 (1984).
102. I. Barin, "Thermochemical Data of Pure Substances", Verlagsgesellschaft mbH, 3rd (1995).
103. S. Khan, M. Al-Shahry and W. Ingler Jr, "Efficient photochemical water splitting by a chemically modified n-TiO2." Science, 297, 2243 (2002).
104. A. Ghosh and H. Maruska, "Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes." J. Electrochem. Soc., 124, 1516 (1977).
105. L. Wilson, P. Wall, J. Pawelczyk, K. Matsukawa and J. Bolton, "Solar photoproduction of hydrogen: a review." Sol. Energy, 57, 37-50 (1996).
106. A.J. Bard, L.R. Faulkner, "Electrochemical Methods: Fundamentals and Applications" Wiley, 2nd (2001).
107. O. Zelaya-angel, H. Yee-madeira and R. Lozada-morales, "Theoretical basis for zincblende to wurtzite CdS-phase transition." Phase Transitions, 70, 11-17 (1999).
108. A. Hagfeldt, H. Lindström, S. Södergren and S.-E. Lindquist, "Photoelectrochemical studies of colloidal TiO2 films: The effect of oxygen studied by photocurrent transients." J. Electroanal. Chem., 381, 39-46 (1995).
109. S. Lin, Y. Lee, C. Chang, Y. Shen and Y. Yang, "Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition." Appl. Phys. Lett., 90, 143517 (2007).
110. 劉慈薇,“二氧化鈦光電及製備及其在光電化學法產氫之應用”,成功大學化工系碩士論文 (2008)