| 研究生: |
徐嘉穗 Hsu, Chia-Sui |
|---|---|
| 論文名稱: |
利用薄膜技術製備電化學式丙酮感測器之研究 Preparation of Electrochemical Acetone Sensor by Thin Film Technology |
| 指導教授: |
周澤川
Chou, T. C. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 177 |
| 中文關鍵詞: | 測器 、化學 、薄膜 、丙酮 |
| 外文關鍵詞: | acetone, sensor, electrochemistry, thin film |
| 相關次數: | 點閱:65 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於丙酮是工業上廣泛應用的溶劑,它極易揮發,且當人體曝露在高濃度的丙酮下,會有頭痛、困倦及嘔吐等症狀,所以丙酮感測器可應用於工業的環境檢測。近年來一些醫學報導指出,糖尿病患者會因脂肪酸降解過快,因此體內的酮體含量會上升。酮體包含丙酮、乙醯乙酸和羥丁酸。因此糖尿病患者的血液、尿液及呼出的氣體內含丙酮的量較一般健康的人高。所以未來丙酮感測器可成為監控糖尿病患者病情的另一項指標。
本研究在液相部份,將對濺鍍鉛的製備條件對感測作探討,並尋求最佳感測條件。以濺鍍鉛為工作電極,在酒石酸鈉溶液中進行感測。在施予工作電極一還原電位下,丙酮會在電極表面上產生氧化還原媒子反應。將丙酮還原為醇類,進而產生電流變化而得到感測訊號。在濺鍍製備條件在功率30W,基板偏壓90V所得的鉛電極可得對丙酮感測有最佳靈敏度的薄膜鉛極。
利用上述條件製備的濺鍍鉛,在施加-2.15V(vs. Ag/AgCl)電位,0.1M酒石酸鈉,攪拌速率100 rpm,30℃下,可得靈敏度3.45µA/cm2ּppm。此感測系統在轉速100 rpm有最佳的靈敏度。隨著溫度上升,靈敏度會提高,但當溫度高至40℃以上增加即不明顯。將濺鍍鉛電極、鉛箔和電鍍鉛三者做比較:濺鍍鉛對感測丙酮的靈敏度最高,約為電鍍鉛靈敏度(1.52µA/cm2ּppm)倍以上,約大於鉛箔電極靈敏度(1.2µA/cm2ּppm)快兩倍。並且濺鍍鉛電極有較短的反應時間約1秒,電鍍鉛的反應時間約5秒,鉛箔電極的反應時間約4.6秒。
本研究對氣相丙酮感測可偵測濃度在50ppm以下的丙酮。利用濺鍍方法將鉛金屬沉積在Nafion®膜上,將電極放置在液態0.1M酒石酸鈉和待測氣體之間進行感測。濺鍍製備條件功率為20 W,腔體壓力為0.018 torr,基本偏壓為90 V時,可得到良好的感測。以上述條件製備的Pb/Nafion®電極,在施加電位為-1.25 V(vs. Ag/AgCl)時,氣體總流速為200 ml/min時,在濃度50 ppm時,可得1.95 mA/cm2的感測訊號。不同的濺鍍功率和腔體偏壓不僅會影響感測的靈敏度,也會影響感測極限濃度。基本偏壓沒有明顯的影響。在感測條件的探討中,可發現當酒石酸納對感測靈敏度和感測極限濃度也有很大的影響。氣體流速度對感測的背景電流影響不大。在氣體總流速為200ml/min 有最佳的感測條件。利用濺鍍法製備的Pb/Nafion®較利用含浸還原法製備的有較好的感測結果。
Acetone has been in common use as a solvent and as an extracting regent, in industry for several decades. It is easy to evaporate in air. When the concentration of acetone in air is higher than 10,000 ppm, people may experience such symptoms as cephalalgia, nausea and so on. Acetone is harmful to human health. Presently, some investigations show that diabetes is the most command pathological cause of elevated blood ketones. The term ketone bodies collectively include three molecules, acetoacetate, 3-β-hydroxybutyrate and acetone, which are associated with the diabetic state. Therefore, the diabetic patient has a higher acetone concentration in their expiration gas, blood, or spittle than that of a nondiabetic people. In the future, the possibility exists to use an acetone sensor as a means of monitoring the diabetic patient’s condition.
In the aqueous solution system, to find the best preparing and sensing conditions of sputtered lead were the major issues in this study. Theoretically, acetone reduced into alcohol form on the surface of Pb working electrode in a suitable electrolyte. Therefore, the sensor produced the reduction current signal. The best preparing conditions of sputtered lead were at power of 30 W, and at bias voltage of 90 V. The applied potential of the acetone sensor was -2.15 V (vs. Ag/AgCl) in 0.1M sodium tartrate. The best sensitivity of thin film lead electrode was about 3.45µA/cm2ּppm at agitation rate of 100 rpm, and 30℃. The sensitivities increased with temperature. But when the temperature was higher than 40℃, the sensitivity did not increase obviously. The thin film lead electrode has a better performance than other lead electrodes prepared by conventional methods. The sensitivity of electroplating lead and lead foil were about 1.52µA/cm2ּppm and 1.2µA/cm2ּppm respectively. The thin film lead also has the shorter response time than electroplating lead and lead foil. When the thin film lead was used as working electrode, the response time is about 1 second. And the response times of electroplating lead and lead foil were 5 and 4.6 seconds respectively.
In gas phase system, the gas sensing system in this study can detect the concentration of acetone below 100 ppm. Pb/Nafion® was used as working electrode. It was prepared by sputter. The best preparing conditions were at power of 20 W, and at pressure of 0.018 torr. And the effect of bias voltage was not obviously. The applied potential of the acetone gas sensor was –1.25 V in (vs. Ag/AgCl) 0.1 M sodium tartrate. The response current of 50 ppm acetone was about 1.95 mA/cm2 at 200 ml/min. Both the sensitivity and the limiting sensing region are affected by the concentration of sodium tartrate. The gas sensing system has the best sensitivity when the total flow rate was at 200 ml/min. The sputtered method is better than impregnation-reduction method to prepare Pb/Nafion® working electrode. It is because that the former has higher sensitivity than the latter.
[1] Akrajas, Salleh M. N., Yahaya M., Enriching The Selectivity of Metalloporphyrins Chemical Sensors by Means of Optical Technique, Sensors & Actuators, B Vol 85, Iss 3, pp 191-196 (2002)
[2] Ballantine D. S. and Wohltjen H., Surface Acoustic Wave, Analytical Chemistry, Vol. 61, 704A (1989)
[3] Bariain C., Matias I. R., Romeo I., Garrido J., Laguna M., Behavioral Experimental Studies of a Novel Vapochromic Material Towards Development of Optical Fiber Organic Compounds Sensor, Sensors & Actuators, B Vol 76, Iss 1-3, pp 25-31 (2001)
[4] Bariain C., Matias I. R., Romeo I., Garrido J., Laguna M., Detection of Volatile Organic Compound Vapors by Using a Vapochromic Material on a Tapered Optical Fiber, Applied Physicsletters, Vol 77, Iss 15, pp 2274-2276 (2000)
[5] Bene R., Perczel I.V., Rétia F., Meyer F.A., Fleisher M., H. Meixner, Chemical Reactions in The Detection of Acetone and NO by a CeO2 Thin Film, Sensors & Actuators, B Vol 71, Iss 1-2, pp 36-41 (2000)
[6] Bene R., PinteH r Z., Perczel I.V., Fleischer M., R eH ti F., High-Temperature Semiconductor Gas Sensors, Vaccum, Vol 61, Iss 2-4, pp 275-278 (2001)
[7] Chapman B., ‘Glow Discharge Process”,chap.3, p.129-131,Academic Press, U. K. (1992)
[8] Ehmani A., Durand V. S. and Tirq P., Surface Morphology of Nafion 117 Membrane by Tapping Mode Atomic Force Microscope, J. Appl. Polym. Sci., 68: 503-508. ( 1997 )
[9] Enea O., Duprez D. and Amadelli R., Gas Phase Electrocatalysis on Metal / Nafion Membranes, Cata. Today, 25: 271-276. (1995)
[10] Freund G., The caloric deficiency hypothesis of ketogenesis tested in men, Metabolism, 14, 985-990 (1965)
[11] Gopel W., Hesse J., and Zemel J. N., Sensors, VCH, New York, p2, (1991)
[12] Hill R. J., Physical Vapor Deposition, Temescal.
[13] Janate P. P., “Principle of Chemical Sensir”, New York, (1989)
[14] Jones A. E., Summers R. L., Detection of Isopropyl Alcohol on a Patient with Diabetic Ketoscidosis, The Journal of Emergency Medicine, Vol. 19, No. 2, pp. 165–168 (2000)
[15] Jones A. W., Sagarduy A., Ericsson E., Ariqvist H. J., Concentraction of acetone in venous blood sample from drunk drivers, type-1 diabetic outpatients, and health blood donors, Journal of analytical toxicology, 17, 3, 182-185 (1993)
[16] Kim Y. H., Choi K. J., Fabrication and Application of an Activated Carbon-Coated Quartz Crystal Sensor, Sensors & Actuators, B 87, 196–200 (2002)
[17] Komatsu S., Tanaka M., Okumura A. and Kung A., Preparation of Cu-Solid Polymer Electrolyte Composite Electrodes And Application to Gas-Phase Electrochemical Reduction of CO2, Electrochim. Acta, 40: 745-753. (1995)
[18] Laffel L., Ketone bodies: a review of Phyiology, Pathophysiology and Application of Monitoring to Diabetes, Diabetes/Metabolism Research and Reviews, 15, 412-426 (1999)
[19] Lee D. S., Jung J. K., Lim J. W., Huh J. S., Lee D. D., Recognition of Volatile Organic Compounds Using SnO2 Sensor Array And Pattern Recognition Analysis, Sensors & Actuators, B Vol 77, Iss 1-2, pp 228-236 (2001)
[20] Lee D. S., Kim Y. T., Huh J. S., Lee D. D., Fabrication and Characteristics of SnO Gas Sensor Array for Volatile Organic Compounds Recognition, Thin Solid Films, Vol 416, Iss 1-2, pp 271-278 (2002)
[21] Li D. Q., Ma M., Surface Acoustic Wave Microsensors Based on Cyclodextrin Coatings, Sensors & Actuators, B Vol 69, Iss 1-2, pp 72-84 (2000)
[22] Makisimovich N., Vorotyntsev V., Nikitina N., Kaskevich O., Karabun P. and Martynenko F., Adsorption Semiconductor Sensor for Diabetic Ketoacidosis Diagnosis, Sensors & Actuators, B 35-36, 419 (1996)
[23] Makisimovich N., Vorotyntsev V., Nikitina N., Kaskevich O., Karabun P., Martynenko F., Adsorption Semiconductor Sensors for Diabetic Ketoacidosis Diagnosis, Sensors & Actuators, B Vol 35-36, pp 419-421 (1996)
[24] Meléndez-Hevia E., Waddell T. G., and Cascante M., The Puzzle of the Krebs Citric Acid Cycle: Assembling the Pieces of Chemically Feasible Reactions, and Opportunism in the Design of Metabolic Pathways During Evolution, J. Mol. Evol., 43, 293 (1996)
[25] Murray R. K., Granner D. K., Mayes P. A., Rodwell V. W., “Harper’s Biochemistry”, Appleton & Lange, chap 24, (2001)
[26] Nanto H., Dougami N., Mukai T., Habara M., Kusano E., Kinbara A., Ogawa T., Oyabu T., A smart Gas Sensor Using Polymer-Film-Coated Quartz Resonator Microbalance, Sensors & Actuators, B 66, 16–18 (2000)
[27] Okabayashi T., Fujimoto T., Yamamoto I., Utsunomiya K., Wada T., Yamashita Y., Nakagawa M., Sensors & Actuators, B 64, 54-58 (2000)
[28] Opekar F. and Stulik K., Electrochemical Sensors with Solid Polymer Electrolytes, Anal. Chim. Acta, 385: 151-162. ( 1999 )
[29] Penza A., Cassano G., Sergi A A., Lo S. C., Russo M., SAW Chemical Sensing Using Poly-Ynes and Organometallic Polymer Films, Sensors & Actuators, B Vol 81, Iss 1, pp 88-98 (2001)
[30] Ping W., Yit T., Haibao X., Farong S., A Novel Method for Diabetes Diagnosis Based on Electronic Nose, Biosensors & Bioelectronics, 12, No. 9-10, 1031–1036 (1997)
[31] Rakow N. A., Suslick K. S., Nature, 406, 710-712 (2000)
[32] Shepherd R. L., Barisci J. N., Collier W. A., Hart A. L., Partridge A. C., and Wallace G. G., Development of Conducting Polymer Coated Screen-Printed Sensors for Measurement of Volatile Compounds, Electroanalysis, 14, No. 9, 575 (2002)
[33] Smith D. L., Thin Film Deposition, 19 ch. 9, p.453
[34] Sulway M. J., Malins J. M., Acetone in Diabetic ketoacidosis, The Lancet, 10, 736-737 (1970)
[35] Tassopoulos C. N., Barnett D., Fraser T. R., Breath-acetone and blood-sugar measurement in diabetes, The Lancet, 1282-1286 (1969)
[36] Tipton P. A., Transient-State Kinetic Analysis of the Oxidative Decarboxylation of D-Malate Catalyzed by Tartrate Dehydrogenase, Biochemistry, 35, 3108 (1996)
[37] Zhang Q., Wang P., Li J., Gao X., Diagnosis of Diabetes by Image Detection of Breath Using Gas-Sensitive Laps, Biosensors & Bioelectronics, 15, 249–256 (2000)
[38] Zhu Y., Shi J., Zhang Z., Zhang C., and Zhang X.., Development of a Gas Sensor Utilizing Chemiluminescence on Nanosized Titanium Dioxide, Anal. Chem., 74,120-124 (2002)
[39] 王佳琪,應用於糖尿病症診斷之高選擇性電流式丙酮感測器及其研究,成功大學碩士論文(2001)
[40] 徐章,高級感測器技術的發展理念,量測資訊,35期,1(1993)
[41] 涂泓先,以超音波與濺鍍法製備電化學式銨離子與氨氣感測器,碩士論文(1999)
[42] 陳炳州,以拉曼光譜研究由磁控濺鍍合併電子迴旋共振系統所成長的類鑽石薄膜,碩士論文,2002
[43] 曾永德,臨床鏡檢學,藝軒出版社,2001
[44] 廖文暉,乙烯氣體感測器之試製及其應用於植物細胞培養生物反應器乙烯濃度之測定,碩士論文 (2002)
[45] 鄭有序,張國標,動量熱量質量傳遞學,復文書局