| 研究生: |
趙姵華 Chao, Pei-Hua |
|---|---|
| 論文名稱: |
以井測資料探討台灣中部離岸地區現地應力之研究 Estimating the In-situ Stresses at Offshore Area in Central Taiwan Using Well Log Data |
| 指導教授: |
李德河
Lee, Der-Her |
| 共同指導教授: |
吳建宏
Wu, Jian-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 井測法 、現地應力 、台西盆地 |
| 外文關鍵詞: | Well Log Data, In-Situ Stresses, Taihsi Basin |
| 相關次數: | 點閱:77 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化碳地質封存技術係將超臨界二氧化碳注入岩層中,可用來減緩因大氣中二氧化碳濃度的升高造成的全球暖化與氣候變遷問題,注入二氧化碳時會造成有效應力下降,可能造成岩層的破壞或斷層帶的再活動,故由安全性判斷某地區是否具有二氧化碳封存潛能,了解現地的應力方位與大小為首要任務。
本研究利用台灣電力公司提供的彰濱一號井,與中國石油股份有限公司海域探勘處提供的彰化外海振安一號與二號井的鑽井資料,來推估台灣中部離岸地區的現地應力狀態。垂直應力以密度電測積分得到,Sv=22.57MPa/km;地層孔隙液壓由重複地層試驗的井底靜壓獲得,Pp=10.0 MPa/km,同鹽水壓梯度;最小水平應力以彈性理論公式計算得到,再加入一應變修正值提高準確度,Sh=15.38MPa/km;最大水平應力則由最小水平應力進一步計算得到,SH=16.86 MPa/km。
現地應力方位,以四臂井徑電測來辨別井口崩落的準則來判釋最大水平應力方位,由淺至深最大水平方位大致可分為三段:1.深度1500~2135m的頭嵙山層與卓蘭層,為西北-東南走向,2.深度2135~2450m的錦水頁岩與桂竹林層,為東-西向,3.深度2450~3000m的觀音山砂岩、打鹿頁岩與北寮層為東北-西南向。
This study investigates the in-situ stress using the borehole log data from TPCS-M1, CDA-1 and CDA-2. Vertical stresses were obtained by density logs, and its stress gradient is Sv=22.59MPa/km. The formation pore pressures were obtained by the static pore pressure from the repeated formation test, and its stress gradient is Pp=10.0 MPa/km. The minimum horizontal stresses were calculated by the elasticity with additional modifications by tectonic strain. The stress gradient is Sh=15.56MPa/km. Then, the maximum horizontal stresses were obtained by knowing the minimum horizontal stresses. The stress gradient is SH=17.86 MPa/km.
The directions of the maximum horizontal stresses from the depth of 1500 to 3000 m can be divided into the following 3 sections by the four-arm caliper tools, which are used in the World Stress Map: 1. The NW-SE for the Toukoshan Formation and Choulan Formation between 1500-2135 m. 2. The E-W for the Chinshui Sale and Kueichulin Formations at the depth of 2135-2450 m. 3. The NE-SW for the Kuanyingshan Sandstone, Talu Shale, and Peiliao Formation at the depth of 2450-3000 m.
1. 中國石油公司訓練所,石油探採:訓練叢書,第三冊,P1063,台灣 嘉義,2003。
2. 中國石油股份有限公司台灣油礦探勘總處,鑽採工程材料手冊,台灣 苗栗縣,1987。
3. 中國石油股份有限公司海域探勘處,振安一號井地下地質報告,台灣 苗栗縣,1976a。
4. 中國石油股份有限公司海域探勘處,振安二號井地下地質報告,台灣 苗栗縣,1976b。
5. 台灣電力公司,二氧化碳地質封存先導試驗場址地質調查及技術研發(一)期末報告,台灣 台北市,2014。
6. 台灣電力公司,二氧化碳地質封存試驗場址調查規劃與研究期末報告,台灣 台北市,2011。
7. 台灣電力公司全球資訊網站,2016,http://www.taipower.com.tw/content/new_info/new_info-b13.aspx?LinkID=6
8. 何信昌,五萬分之一台灣地質圖說明書:圖幅第十二號-苗栗,經濟部中央地質調查所,台灣 新北市,1994。
9. 何春蓀,台灣地質概論-台灣地質圖說明書,經濟部中央地質調查所,台灣 新北市,2003。
10. 吳榮章、紀文榮,微體化石與石油探勘,科學發展,第465期,P6-17,2011。
11. 呂明達、宣大衡、黃雲津、范振暉,台灣陸上二氧化碳地質封存潛能推估,鑛冶,第52卷,第3期,P154-161,2008。
12. 汪蘭君,鐵砧山現地應力場與斷層再活動分析,國立中央大學,應用地質研究所碩士論文,台灣 桃園市,2010。
13. 周錦德,石油地質學(上冊)-地物、地化與地質探勘之整合,瑩圃電腦出版社,台灣 台北市,1989。
14. 屈覺維,在國際法架構下的二氧化碳封存研究,國立中正大學,法律學研究所碩士論文,台灣 嘉義縣,2013。
15. 林國安、吳榮章、余輝龍、宣大衡,二氧化碳地下封存技術與展望,鑛冶,第55卷,第1期,P17-33,2008。
16. 林殿順,台灣二氧化碳地質封存潛能及安全性,經濟前瞻,第132期,P93-97,2010
17. 邱紹平、吳金通,油氣井測試-探採叢書之十二,台灣油礦探勘處中國石油學會,台灣 苗栗縣,1973。
18. 俞旗文,利用取樣岩心量測岩石現地應力的技術,中興工程,第94期,P11-18,2007。
19. 洪日豪、嚴珮綺、周定芳,由井口伸張方向推論台灣竹苗地區最大水平應力方向,台灣石油地質,第39期,P179-201,2012。
20. 桂椿雄,超臨界流體萃取法之簡介,化學,第56卷,第4期,P 303-309,1998。
21. 翁豐原、湯淳雄,鑽採試驗-探採叢書之八,台灣油礦探勘處中國石油學會,台灣 苗栗縣,1973。
22. 張嘉修、陳俊延、林志生、楊勝仲、周德珍、郭子禎、顏宏偉、李澤民,二氧化碳再利用-微藻養殖,科學發展,第510 期,P12-16,2015。
23. 紹國士、李易叡、俞旗文、葛文忠、冀樹勇,台西盆地二氧化碳地質封存特性與封存量之探討,中興工程,第118期,P3-12,2013。
24. 陳姵如,利用蛇紋石進行二氧化碳礦化封存研究, 國立臺北科技大學,資源工程研究所碩士論文,台灣 台北市,2012。
25. 陳瑞惠,巴黎會議重要談判結果與可能影響,經濟部節能減碳推動辦公室專題, P1-10,2016。www.go-moea.tw/download/message3/2016年1月專題-巴黎會議重要談判結果與可能影響.pdf
26. 楊明宗、歐陽湘、柳志錫、吳建宏,水力破裂法現地應力量測及破壞準則探討,地工技術,第99期,P5-14,2004。
27. 楊曉明、俞旗文,超臨界二氧化碳的地質封存,水利土木科技資訊,第55期,P28-31,2012。
28. 劉建麟,利用電測資料推估台灣彰濱地區鑽井場址的地下應力場,國立中央大學,應用地質研究所碩士論文,台灣 桃園市,2014。
29. 劉政典、謝秉志、曾繼忠、林再興,鹽水地層二氧化碳封存量估算之研究,礦治,第55卷,第3期,P41-52,2011。
30. 鄧屬予,台灣第四紀大地構造,經濟部中央地質調查所特刊,第 18 號,P1-24,2007。
31. 謝秉志、林再興,井測法-地層岩性及石油蘊藏探勘,科學發展,第407期,P46-51,2006。
32. 嚴珮綺,利用鑽井資料推估台灣新竹至台中地區的地下現地應力狀態,國立中央大學,應用地質研究所碩士論文,台灣 桃園市,2012。
33. 蘇思伃,二氧化碳封存場址之震測資料分析,國立中央大學,地球科學學系碩士論文,台灣 桃園市,2013。
34. Aadnoy, B. S., Inversion Technique To Determine the In-Situ, Stress Field From Fracturing Data, SPE Annual Technical Conference and Exhibition, Texas, P55-67, 1990.
35. Ahmed, U., Markley, M.E., Crary, S.F., Enhanced In-Situ Stress Profiling With Microfracture,Core, and Sonic-Logging Data., SPE Fonnation Evaluation., Vol. 6, P243-251, 1991.
36. Anderson, E. M., The Dynamics of Faulting., Oliver and Boyd., Edinburgh., UK., 1951.
37. Anderson, R. A., Ingram, D. S., and Zanier, A. M., Determining fracture pressure gradients from well logs, Journal of Petroleum Technology, P1259-1268, 1973.
38. Bell, J.S. and Gough, D. I., Northeast-southwest compressive stress in Alberta evidence from oil wells., Earth and Planetary Science Letters, Vol. 45, Issue 2, P475-482, 1979.
39. Bell, J. S., The stress regime of the Scotian Shelf offshore eastern Canada to 6 kilometres depth and implications for rock mechanics and hydrocarbon migration., ISRM International Symposium, France, P1243-1265, 1990.
40. Blanton, T., Olson, J., Stress Magnitudes from Logs: Effects of Tectonic Strains and Temperature., SPE Reservoir Evalution & Engineering, Vol. 2, Issue 1, P62-68, 1999.
41. Budisa, N., and Makuch, D.S., Supercritical Carbon Dioxide and Its Potential as a Life-Sustaining Solvent in a Planetary Environment., Life, Vol. 4, P331-340, 2014.
42. Budisa, N., Makuch, D. S., Supercritical Carbon Dioxide and Its Potential as a Life-Sustaining Solvent in a Planetary Environment, Life, Vol. 4, P331-340, 2014.
43. CO2 capture project, http://www.co2captureproject.org/index.html/, 2016.
44. CO2 CRC, http://www.co2crc.com.au/, 2016.
45. Eaton, B. A., The Equation for Geopressure Predicition from Well Logs. Fall Meeting of the Society of Petroleum Engineers of AIME, Society of Petroleum Engineers, 1975.
46. Fairhurst, C, Stress estimation in rock: a brief history and review. International Journal of Rock Mechanics & Mining Sciences., Vol. 40, P957-973, 2003.
47. Figueiredo, B., Tsang, C. F., Rutqvist, J., Bensabat, J., Niemi, A., Coupled hydro-mechanical processes and fault reactivation induced by CO2 Injection in a three-layer storage formation., International Journal of Greenhouse Gas Control., Vol. 39, P432-448, 2015.
48. Haimson, B., and Fairhurst, C., Initiation and Extension of Hydraulic Fractures in Rocks, Society of Petroleum Engineers, Vol. 11, P310-318, 1967.
49. Haimson, B., and Fairhurst, C., In-situ stress determination at great depth by means of hydraulic fracturing, U.S. Symposium on Rock Mechanics (USRMS) 11th, Berkeley, California, 1969.
50. Haimson, B. C., and Cornet, F. H., ISRM Suggested Methods for rock stress estimation—Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)., International Journal of Rock Mechanics & Mining Sciences, Vol. 40, P 1011-1020, 2003.
51. Hareland, G., and Harikrishnan, R., Comparison and Verification of Electric-Log-Derived Rock Stresses and Rock Stresses Determined From the Mohr Failure Envelope, Society of Petroleum Engineers, Vol. 4, P219-222, 1996.
52. Hillis, R.R and Reynolds, S.D., The Australian Stress Map., Journal of the Geological Society, Vol. 157, P915-921, 2000.
53. Hossain, M. E., and Al-Majed, A. A., Fundamentals of Sustainable Drilling Engineering, Scrivener Publishing LLC, Salem, Massachusetts, 2015.
54. Hubbert, K.M., Willis, D.G., Mechanics of hydraulic fracturing. Petroleum Transactions AIME., T.P.4597, Vol. 210, P153-156, 1957
55. Hudson, J. A. and Harrison, J. P., Engineering Rock Mechanics-An Introdution to the Principles., Pergamon, Amsterdam, The Netherlands, 1997.
56. International Energy Agency (IEA), Technology Roadmap-Carbon Capture and Storage., Paris, France, P24, 2013.
57. International Energy Agency (IEA), Key world energy statistics, Paris, France, 2016.
58. IPCC, Carbon Dioxide Capture and Storage., Cambridge University Press, New York, USA, 2005.
59. Jaeger, J.C., Cook, N.G.W., Fundamentals of Rock Mechanics. 4th., London Blackwell, 2007.
60. Lin, A. T., and Watts, A. B., Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin., Journal of Geophysical Research, Vol. 107, PETG2-1–2-19, 2002.
61. Lin, A. T., Cenozoic stratigraphy and tectonic development of the west Taiwan basins, Ph.D. thesis, P246., Univ. of Oxford, Oxford, UK, 2001.
62. Lin, A. T., Watts, A. B., Hesselbo, S. P., , Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region: Basin Research, Vol. 15, P453-478, 2003.
63. Lin, W., Marek, K., Imamura, T., Matsuki, K., Determination of three-dimensional in situ stresses from anelastic strain recovery measurement of cores at great depth., Tectonophysics.,Vol. 426, P221-238, 2006.
64. Matter, J. M., Stute, M., Snæbjörnsdottir, S. O., Oelkers, E. H., Gislason, S. R., Aradottir, E. S., Sigfusson, B., Gunnarsson, I., Sigurdardottir, H., Gunnlaugsson, E., Axelsson, G., Alfredsson, H. A., Boenisch, D. W., Mesfin, K., Taya, D. F., Hall, J., Dideriksen, K., Broecker, W. S., Rapid Carbon Mineralization for Permanent Disposal of Anthropogenic Carbon Dioxide Emissions., Science, Vol. 352, P1312-1314, 2016.
65. Mcgarr, A., Gay, N.C., State of stress in the earth’s crust., Earth Planet., Vol. 6, P405-436, 1978.
66. Pacala, S. and Socolow, R., Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies., Science., Vol. 305, P968-972, 2004.
67. Plumb, R.A., Hickman, S.H., Stress-Induced Borehole Elongation: A Comparison Between the Four-Arm Dipmeter and the Borehole Televiewer in the Auburn Geothermal Well., Journal of geophysical research, Vol. 90, P5513- 5521, 1985.
68. Reinecker, J., Tingay, M., Muller, B., Borehole breakout analysis from four-arm caliper logs., World Stress Map Project- guidelines: four-arm caliper logs, Helmholtz Cent. Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany., Guidelines, P1-5, 2003.
69. Reynolds, S.D., Mildren, S.D., Hillis, R.R., Meyer, J.J., Constraining stress magnitudes using petroleum exploration data in the Cooper-Eromanga Basin, Australia., Tectonophysics., Vol. 415, Issues 1-4, P123-140, 2006.
70. Schlumberher, Log Interpretation Principle/Applications, Seventh Printing, Sugar Land, Texas, 1989.
71. Seto, M., Nag, D.K., VutukurI, V.S., In-situ rock stress measurement from rock cores using the acoustic emission method and deformation rate analysis., Geotechnical and Geological Engineering., Vol. 17, P241-266, 1999.
72. Sjoberg, R., Christianssonb, J., Hudsonc, A., ISRM Suggested Methods for rock stress estimation-Part 2:overcoring methods., International Journal of Rock Mechanics & Mining Sciences., Vol. 40, P999-1010, 2003.
73. Song, L., Measurement of Minimum Horizontal Stress from Logging and Drilling Data in Unconventional Oil and Gas, UNIVERSITY OF CALGARY, Mater Thesis, 2012.
74. Streit, J. E, Hillis, R., Estimating Fault Stability and Sustainable Fluid Pressures for Underground Storage of CO2 in Porous Rock., Energy., Vol. 29, P1445-1456, 2004.
75. Suppe, J., Hu, C. T., Chen, Y. J., Present-day stress directions in western Taiwan inferred from borehole., Petroleum Geology of Taiwan, Vol. 21, P1-12, 1985.
76. Suppe, J., Mechanics of mountain building and metamorphisms in Taiwan, Memoir of the Geological Society of China, no. 4, P67-89, 1981.
77. Teng, L.S., Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan., Tecionophysics., Vol. 183, P57-76, 1990.
78. Tingay, M., Reinecker, J., Müller, B., Borehole breakout and drilling-induced fracture analysis from image logs, World Stress Map Project- guidelines: Image Logs, Helmholtz Cent. Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany, 2008.
79. Tollefson, J., Countries with highest CO2-emitting power sectors (tonnes per year):World's most CO2-emitting power stations revealed., Nature, Vol. 450, P327., 2007.
80. United Nations Framework Convention on Climate Change(UNFCCC), PARIS AGREEMENT, 2015.
81. Yang, K.M, Huang, S.T., Wu, J.C. , Ting, H.H., Mei, W.W., Review and New Insights on Foreland Tectonics in Western Taiwan., International Geology Review, Vol. 48, P910-941, 2006.
82. Yamamoto, Y., Lin, W., Oda, H. and Byrne, T., Stress states at the subduction input site, Nankai Subduction Zone, using anelastic strain recovery(ASR) data in the basement basalt and overlying sediments., Tectonophys, Vol. 600, P91-98, 2013
83. Zoback, M. D., Moos, D. and Mastin, L., Well bore breakouts and in Situ stress., Journal of Geophysical Research., Vol. 90, P5523-5530, 1985.
84. Zoback, M. D., Reservoir Geomechanics., Cambridge university press., New York, USA, 2007.