| 研究生: |
沈莉雯 Shen, Li-Wen |
|---|---|
| 論文名稱: |
應用分佈式布拉格反射鏡於矽/矽鍺串疊太陽能電池之特性研究 Investigation performance of silicon and silicon germanium tandem solar cells with distributed Bragg reflector |
| 指導教授: |
李欣縈
Lee, Hsin-Ying |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 電漿增強式化學氣相沉積系統 、分佈式布拉格反射鏡 、矽薄膜太陽能電池 |
| 外文關鍵詞: | Plasma-enhanced chemical vapor deposition system, distributed Bragg reflector, silicon thin film solar cell |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是以電子束蒸鍍系統鍍製二氧化鈦與二氧化矽,將其堆疊成分佈式布拉格反射鏡,並在其中加入以微影蝕刻製作的金屬導電柱以增加導電性,再將此結構作為矽/矽鍺串疊型太陽能電池之中間反射層。而使用電子束蒸鍍系統鍍膜時通入氧氣,可得到透明的二氧化鈦及二氧化矽薄膜,當分佈式布拉格反射鏡堆疊至2.5對時,可在波長515nm時達到55%的高反射率。將此反射鏡作為串疊型太陽能電池的中間反射層,可將頂部電池所需之短波長光源反射再利用,使頂部電池吸收層厚度減薄,提昇太陽能電池之光電流汲取效率。此外,本研究將設計的圖案導電金屬柱加入此絕緣的分佈式布拉格反射鏡,以提昇導電性。加入此導電分佈式布拉格反射鏡後,得到串疊型太陽能電池的效率為1.368%。
In this work, the titanium dioxide (TiO2) and silicon dioxide (SiO2) were alternately deposited using electron beam evaporation system to form the distributed Bragg reflector (DBR), and the conductive metal pillars prepared by photo-etching were added into the DBR to enhance the conductivity; we use this structure as the intermediate reflector in the silicon and silicon germanium tandem solar cell. Transparent TiO2 and SiO2 could be deposited by electron beam evaporation system in O2 ambient. The 65-nm-thick TiO2 film and 103.5-nm-thick SiO2 film were alternately deposited for 2.5 pairs to form the DBR with high reflectivity of 55% at wavelength of 515 nm. By using this structure as the intermediate reflector in the tandem cell, the short-wavelength light would be reflected to the top cell to be reused. Therefore, the thickness of the active layer of the top cell could be reduced, and the current extraction efficiency would be enhanced consequently. Moreover, we designed and added the patterned conductive aluminum pillars into the insulating DBR to enhance the conductivity. With this conductive intermediate reflector, the conversion efficiency of the tandem solar cell is 1.368%.
參考文獻
[1] 行政院國家科學委員會,《春天的花兒秋天開?都是溫室效應惹
的禍!》(科學發展月刊,388期,2005)。
[2] 戴寶通、鄭晃忠,《太陽能電池技術手冊》(台灣電子材料與元
件協會,2008)。
[3] 翁敏航,《太陽能電池-原理、元件、材料、製程與檢測技術》(東
華書局,2010)。
[4] D. L. Staebler and C. R. Wronski, "Reversible conductivity changes
in discharge-produced amorphous Si", Applied Physics Letters, Vol.
31, 292(1977).
[5] H. Keppner, J. Meier, P. Torres, D. Fischer and A. Shah,
"Microcrystalline silicon and micromorph tandem solar cells", Appl.
Phys. A, Vol. 69, 169(1999).
[6] P. Buehlmann, J. Bailat, D. Dominé, A. Billet, F. Meillaud, A. Feltrin
and C. Ballif, " In situ silicon oxide based intermediate reflector for
thin-film silicon micromorph solar cells", Applied Physics Letters,
Vol. 91, 143505(2007).
[7] W. I. Lee, "Wide bandwidth AlAs/AlGaAs tandem Bragg reflectors
grown by organometallic vapor phase epitaxy", Appl. Phys. Lett.,
Vol.67, 3753(1995).
[8] 莊嘉琛,《太陽能工程-太陽電池篇》(全華科技圖書股份有限公
司,2008)。
[9] C. Y. Chang and S. M. Sze, "ULSI Technology", The McGraw Hill
Companies Inc.(1996).
[10] 羅吉宗,《薄膜科技與應用》(全華科技圖書股份有限公司,
2004)。
[11] 李正中,《薄膜光學與鍍膜技術》(藝軒圖書出版社,1999)。
[12] C. Y. Tseng and C. T. Lee, " Improved performance mechanism of
III–V compound triple-junction solar cell using hybrid electrode
structure", Solar Energy, Vol. 89, 17(2013).
[13] C. Y. Tseng and C. T. Lee, " Mechanisms of (NH4)2Sx-treated III-V
compound triple-junction solar cells incorporating with hybrid
electrode", Applied Physics Letters, Vol. 101, 033902(2012).
校內:2023-12-31公開