簡易檢索 / 詳目顯示

研究生: 謝家任
Hsieh, Chia-Jen
論文名稱: 瀝青混凝土平衡配比設計法於台灣鋪面工程之可行性研究
Feasibility Study of Asphalt Concrete Balance Mix Design Method for Pavement Engineering in Taiwan
指導教授: 楊士賢
Yang, Shih-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 90
中文關鍵詞: 成效平衡設計途徑(BMD)成效試驗車轍開裂
外文關鍵詞: Balanced Mix Design(BMD), performance test, rutting, cracking
相關次數: 點閱:88下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前台灣瀝青混凝土主要採用馬歇爾配比設計法來決定最佳瀝青用量,然而面對日益嚴重的極端氣候、交通載重遽增、以及瀝青混凝土原料 (瀝青、粒料、填充料、改質劑) 來源日益廣泛,馬歇爾設計中基於經驗的材料設計規範值的適用性亦受到嚴苛挑戰。為應對上述挑戰,國際上行之有效的方法之一是將瀝青混凝土成效試驗納入配比設計程序,以開發成效平衡的混合料,又稱為平衡配比設計(BMD)。因此,目前迫切需要研究將成效試驗和BMD納入台灣鋪面工程的可行性。本研究的目的是評估在台灣實施 BMD 的可行性,研究中採用文獻分析、專家問卷調查和實驗室平衡配比設計案例,從各方面綜合評估台灣路面工程實施 BMD 的可行性。研究結果顯示,就實驗技術面而言,台灣執行BMD是可行的,結合國際上已實施BMD地區之經驗,後續需進行BMD試驗與程序的推廣,以及研究台灣本土環境的成效試驗門檻值。此外由學者專家的問卷調查中亦可發現,現階段台灣鋪面工程界對車轍成效試驗已有相當的瞭解,反之對於裂縫成效試驗的十分陌生。研究中分析數種車轍與裂縫成效試驗之試驗時間-成本,發現適合同實用於配比設計與品質驗證階段的車轍與裂縫成效試驗分別為HWTT與IDEAL-CT試驗。由試驗流程分析,因導入BMD方法造成瀝青混凝土配比設計額外增加的時間,業界專家多數認為是可以接受的。總體來說,本研究建議台灣未來施行BMD時可基於不同道路等級調整BMD之施行方案,同時建議推動初期,可先採用具成效驗證之體積設計法做為BMD途徑,待成效試驗觀念普及後,再納入進階的成效改進的體積設計法途徑。

    Currently, the Marshall mix design method is used to determine the optimum asphalt content for asphalt concrete in Taiwan. However, the applicability of the empirical design specification in the Marshall method has been severely challenged by the extreme climate, the rapid increase in traffic loadings, and the wide range of sources of asphalt concrete materials. In respond to the aforementioned challenge, one of the proven approaches internationally is to incorporate the asphalt concrete performance test in the mix design procedure to develop a performance balanced material. Thus, there is an urgent need to investigate the feasibility of incorporating performance tests and BMD into Taiwan’s pavement engineering. The objective of this study is to evaluate the feasibility of implementing BMD in Taiwan. The study has adopted literature analysis, expert questionnaire survey, and laboratory balance mix design practice to overall evaluate feasibility of implementing BMD in Taiwan.
    The results of the study show that Taiwan's implementation of BMD is feasible in terms of experimental technology. And it was found that the performance tests that were suitable for the mix design and quality assurance stages were the HWTT and IDEAL-CT. According to the analysis of the test process, most experts believe that the additional time required for doing a mix design due to using BMD method is acceptable. In general, this study suggests that when implementing BMD in Taiwan in the future, the BMD implementation plan can be adjusted based on different road levels.

    摘要 I ABSTRACT II 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 論文架構與說明 3 第二章 文獻回顧 5 2.1 成效平衡配比設計 5 2.1.1 成效平衡配比設計途徑 (Balanced Mix Design Approach) 6 2.1.2 美國平衡配比設計實施現況 11 2.2 瀝青混凝土成效試驗 16 2.2.1 車轍成效試驗 16 2.2.2 裂縫成效試驗(Cracking Test) 24 第三章 研究方法與規劃 33 3.1 研究方法與步驟 33 3.1.1 研究方法 33 3.1.2 研究步驟 34 3.2 瀝青鋪面專家問卷調查 35 3.2.1 問卷受訪者背景 35 3.2.2 問卷內容簡述 38 3.3 平衡配比設計案例 39 3.3.1 執行步驟 39 3.3.2 粒料與瀝青膠泥基本物性 40 3.3.3 粒料級配 41 3.3.4 成效試驗方法與指標 42 第四章 BMD技術可行性 45 4.1 問卷結果-配比設計執行現況 45 4.1.1 馬歇爾配比設計所需時間 45 4.1.2 馬歇爾配比設計參數 46 4.2 平衡配比設計案例與國際執行現況 48 4.2.1 平衡配比設計案例 49 4.2.2 國際BMD執行現況 56 4.3 小結-BMD技術可行性 60 第五章 時間與成本可行性 62 5.1 問卷結果-成效試驗執行現況與BMD推動準備 62 5.1.1 成效試驗執行現況 62 5.1.2 BMD推動準備 66 5.2 平衡配比設計成本與時間 72 5.2.1 成效試驗成本與試驗時間 72 5.2.2 規範跟流程之時間評估 77 5.3 小結-時間與成本可行性 80 第六章 結論與建議 81 6.1 結論 81 6.2 建議 82 參考文獻 83

    Li, H., Zhang, F., Feng, Z., Li, W., & Zou, X. (2021). Study on waste engine oil and waste cooking oil on performance improvement of aged asphalt and application in reclaimed asphalt mixture. Construction and Building Materials, 276, 122138.
    Becker, Y., Mendez, M. P., & Rodriguez, Y. (2001). Polymer modified asphalt. In Vision tecnologica.
    Newcomb, D., & Zhou, F. (2018). Balanced design of asphalt mixtures (No. MN/RC 2018-22). Minnesota. Dept. of Transportation. Research Services & Library.
    West, R., Rodezno, C., Leiva, F., & Yin, F. (2018). Development of a Framework for Balanced Mix Design (Publication No. NCHRP 20-07/Task 406). Auburn, AL: National Center for Asphalt Technology at Auburn University.
    Harvey, J., R. Wu, J. Signore, I. Basheer, S. Holikatti, P. Vacura, and J. Holland. 2014. “Performance-Based Specifications: California Experience to Date.” Transportation Research E-Circular E-C189.
    Cooper, S.B., W. King, and S. Kabir. 2016. “Testing and Analysis of LWT and SCB Properties of Asphalt Concrete Mixtures.” Final Report 536. Louisiana Department of Transportation and Development; Louisiana Transportation Research Center.
    Bennert, T., Hass, E., Wass, E., and Berger, B. Indirect Tensile Testing for Balanced Mixture Design and Quality Control Performance Testing. Journal of the Association of Asphalt Paving Technologists, Vol. 90, 2020, pp. 363-390.
    Kumar, V., Coleri, E., Obaid, I., Belc, A. L., & Sutherland, A. J. (2022). Selection of Durable, Environmentally Friendly, and Cost-Effective Asphalt Mixtures. Materials, 15(14), 4873.
    Diefenderfer, S. D., & Bowers, B. F. (2019). Initial approach to performance (balanced) mix design: The Virginia experience. Transportation Research Record, 2673(2), 335-345.
    Zhou, F., Steger, R., & Mogawer, W. (2021). Development of a coherent framework for balanced mix design and production quality control and quality acceptance. Construction and Building Materials, 287, 123020.
    Bennert, T. (2019). Evaluating Balanced Mixture Design for New Jersey to Enhance Asphalt Mixture Durability. Asphalt Mixtures, 72.
    Austerman, A. J., Mogawer, W. S., & Stuart, K. D. (2018). Influence of production considerations on balanced mixture designs. Transportation Research Record, 2672(28), 426-437.
    Delorme, J. L., De la Roche, C., & Wendling, L. (2007). LPC bituminous mixtures design guide. Laboratoire Central des Ponts et Chaussées.
    Standard, E. N. (2016). 13108-1: 2016-07-Bituminous mixtures-Material specifications-Part 1: Asphalt Concrete. European Committee for Standardization CEN: Paris, France.
    European Standard. (2020). EN 12697-34 Bituminous Mixtures—Test Methods—Part 34: Marshall Test.
    Pereira, P., & Pais, J. (2017). Main flexible pavement and mix design methods in Europe and challenges for the development of an European method. Journal of traffic and transportation engineering (English edition), 4(4), 316-346.
    Southern African Bitumen Association 2016, Design and use of asphalt in road pavements, 2nd edn, manual 35/TRH 8, Sabita, Western Cape, South Africa.
    Booshehrian, A., Mogawer, W. S. andBonaquist, R. (2013) ‘How to construct an asphalt binder master curve and assess the degree of blending between RAP and virgin binders’, Journal of Materials in Civil Engineering, 25(12), pp. 1813–1821. doi: 10.1061/(ASCE)MT.1943-5533.0000726.
    Zhang, J., Alvarez, A. E., Lee, S. I., Torres, A., & Walubita, L. F. (2013). Comparison of flow number, dynamic modulus, and repeated load tests for evaluation of HMA permanent deformation. Construction and Building Materials, 44, 391-398.
    Mallick, R. B., Ahlrich, R., and Brown, E. R. (1995). Potential of Dynamic Creep to Predict Rutting. ASTM STP 1265.
    Hussan, S., Kamal, M. A., Hafeez, I., Farooq, D., Ahmad, N., & Khanzada, S. (2019). Statistical evaluation of factors affecting the laboratory rutting susceptibility of asphalt mixtures. International Journal of Pavement Engineering, 20(4), 402-416.
    Cooley, L.A.; Kandhal, P.S.; Buchanan, M.S.; Fee, F. and Epps, A. (2000). Loaded Wheel Testers in the United States: State of the Practice. NCAT Report No. 2000-4. National Center for Asphalt Technology. Auburn, AL.
    Aschenbrener, T. (1994). “Influence of Refining Processes and Crude Oil Sources Used in Colorado on Results from the Hamburg Wheel Tracking Device.” Final Report No. CDOT-DTD-R-94-7. Colorado Department of Transportation, Denver, Colorado.
    Martin, A.E., Walubita, L.F., Hugo, F. and Bangera, N.U. (2003). Pavement Response and Rutting for Full-Scale and Scaled APT. Journal of Transportation Engineering, 129(4), pp. 451-61.
    Mohammad, L. N, Mostafa A Elseifi, Amar Raghavendra, et al. Hamburg wheel-track test equipment requirements and improvements to AASHTO T324[R]. Washington: Transportation Research Board, 2015.
    Grobler, J., REBBECHI, J., & Denneman, E. (2018). National performance-based asphalt specification framework (No. AP-T331-18).
    Beecroft, A., & Petho, L. (2015). P3_Commissioning of Hamburg Wheel Tracking Device (HWDT).
    Texas D.O.T. (2014). “Standard Specifications for Construction and Maintenance of Highways, Streets, and Bridges.” Texas Department of Transportation, Austin, TX.
    Rahman, F., & Hossain, M. (2014). Review and analysis of hamburg wheel tracking device test data (No. KS-14-1).
    Ozer, H., Al-Qadi, I. L., Singhvi, P., Bausano, J., Carvalho, R., Li, X., & Gibson, N. (2018). Prediction of pavement fatigue cracking at an accelerated testing section using asphalt mixture performance tests. International Journal of Pavement Engineering, 19(3), 264–278. https://doi.org/10.1080/10298436.2017.1347435
    Kim, Y. R., & Wen, H. (2002). Fracture energy from indirect tension testing. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical
    Ozer, H., Al-Qadi, I. L., Lambros, J., El-Khatib, A., Singhvi, P., & Doll, B. (2016). Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters. Construction and Building Materials, 115, 390–401. https://doi.org/10.1016/j.conbuildmat.2016.03.144
    Wu, Z., Mohammad, L. N., Wang, L. B., & Mull, M. A. (2005). Fracture Resistance Characterization of Superpave Mixtures Using the Semi-Circular Bending Test. Journal of ASTM International 2, no. 3, 1–15. https://doi.org/10.1520/JAI12264
    Wagoner, M. P., Buttlar, W. G., & Paulino, G. H. (2005). Disk-shaped compact tension test for asphalt concrete fracture. Experimental Mechanics, 45(3), 270–277. https://doi.org/10.1177/0014485105053205
    Walubita, L. F., Faruk, A. N. M., Alvarez, A. E., & Scullion, T. (2013). The Overlay Tester (OT): Using the Fracture Energy Index concept to analyze the OT monotonic loading test data. Construction and Building Materials, 40, 802–811.
    Zhou, F., Hu, S., & Scullion, T. (2007). Development And Verification Of The Overlay Tester Based Fatigue Cracking Prediction Approach. FHWA/TX-07/9-1502-01-8, 7(2).
    Kallas, B. F., & Puzinauskas, V. P. (1972). Flexure Fatigue Tests on Asphalt Paving Mixtures. In B. M. Gallaway (Ed.), Fatigue of Compacted Bituminous Aggregate Mixtures (ASTM International) (pp. 47–66). ASTM International.
    Kim, H., Wagoner, M. P., & Buttlar, W. G. (2009). Micromechanical fracture modeling of asphalt concrete using a single-edge notched beam test. Materials and Structures/Materiaux et Constructions, 42(5), 677–689. https://doi.org/10.1617/s11527-008-9412-8
    Sias, J., Kim, Y., Brown, S., Rowe, G., Chehab, G., & Reinke, G. (2002). Development of a simplified fatigue test and analysis procedure using a viscoelastic, continuum damage model. In Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions (Vol. 71).
    AASHTO T322. Standard Method of Test for Determining the Creep Compliance and Strength of Hot Mix Asphalt (HMA) Using the Indirect Tensile Test Device. Washington: American Association of State Highway and Transportation Officials, 2014.
    Zhou et al. (2017). Development of an IDEAL cracking test for asphalt mix design and QC/QA.
    Al-Qadi, I., Ozer, H., Lambros, J., Lippert, D., El Khatib, A., Khan, T., Singh, P., & Rivera-Perez, J. J. (2015). Testing Protocols to Ensure Mix Performance w/ High RAP and RAS. Illinois Center for Transportation, 1, 209.
    Ozer, H., Al-Qadi, I. L., Lambros, J., El-Khatib, A., Singhvi, P., & Doll, B. (2016). Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters. Construction and Building Materials, 115, 390–401. https://doi.org/10.1016/j.conbuildmat.2016.03.144
    AASHTO TP 124. (2016). Determining the Fracture Potential of Asphalt Mixtures Using the Illinois Flexibility Index Test (I-FIT). Illinois Department of Transportation.
    Bazant, Z. P., & Fellow. (1996). Analysis of Work-of-Fracture Method for Measuring Fracture Energy of Concrete. Journal of Engineering Mechanics, 122(February), 138–144.
    Hillerborg, A. (1985). The theoretical basis of a method to determine the fracture energy GF of concrete. Materials and Structures, 18(4), 291–296. https://doi.org/10.1007/BF02472919
    Germann, F., & Lytton, R. (1979). Methodology for predicting the reflection cracking life of asphalt concrete overlays. The Texas State Department of Highways and Pucblic Transportation, 2, 137. http://adsabs.harvard.edu/abs/1979tamu.reptQ....G
    Zhou, F., & Scullion, T. (2005). Overlay Tester: A Rapid Performance Related Crack Resistance Test. Report FHWA/TX-05/0-4667-2, 7(2), 1–74.
    Zhou, F., Hu, S., & Scullion, T. (2006). Integrated Asphalt (Overlay ) Mixture Design, Balancing Rutting and Cracking Requirements. Publication NO FHWA/TX-06/0-5123-1 2. FHWA, U.S. Department of Transportation, 7(2), 162.
    Hajj, E. Y., Sebaaly, P. E., & Loria, L. (2010). Reflection Cracking of Flexible Pavements Phase III: Field Verification. Research Report No. 13KJ-1. Nevada Department of Transportation, Research Division, University of Nevada, Reno, NV.
    Walubita, L. F., Faruk, A. N., Das, G., Tanvir, H. A., Zhang, J., & Scullion, T. (2012). The Overlay Tester: A Sensitivity Study to Improve Repeatability and Minimize Variability in the Test Results. FHWA/TX-12/0-6607-1, 7(2), 153p. https://trid.trb.org/view/1137348
    Lubinda F, Walubita. (2018).The Hamburg Rutting Test (HWTT) alternative data analysis methods and HMA screening criteria.
    Nguyen, Minh-Nhut. "Investigation of different data analysis methods and performance parameters of hamburg wheel tracking test." MS Thesis, Department of Civil Engineering, National Cheng Kung University. 2020.
    Golalipour, A.K., Amir, Ehsan Jamshidi, Yunus Niazi, Zahra Afsharikia, and Mahmood Khadem. “Effect of Aggregate Gradation on Rutting of Asphalt Pavements.” Procedia – Social and Behavioral Sciences 53 (October 2012): 440–449.
    Coleri, E., Sreedhar, S., & Obaid, I. A. (2020). Development of a Balanced Mix Design Method in Oregon (No. FHWA-OR-RD-21-03). Oregon. Dept. of Transportation. Research Section.
    Zhu, Z., Singhvi, P., Espinoza-Luque, A. F., Ozer, H., & Al-Qadi, I. L. (2019). Influence of mix design parameters on asphalt concrete aging rate using I-FIT specimens. Construction and Building Materials, 200, 181-187. doi:10.1016/j.conbuildmat.2018.12.099
    National Asphalt Pavement Association (NAPA) (2021).BALANCED MIX DESIGN APPROACHES. Retrieved July 24, 2022, from https://www.asphaltpavement.org/expertise/engineering/resources/bmd-resource-guide/balanced-mix-design-approaches

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE