| 研究生: |
黃卲宭 Huang, Shao-Chun |
|---|---|
| 論文名稱: |
鋁摻雜氧化鋅奈米柱壓電式奈米發電機之效能提升與其濕度感測應用之研究 Performance Enhancement and Humidity Sensing Application of Aluminum-Doped Zinc Oxide Nanorod Piezoelectric Nanogenerator |
| 指導教授: |
江孟學
Chiang, Meng-Hsueh 蘇炎坤 Su, Yan-Kuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 一維氧化鋅奈米柱 、鋁摻雜氧化鋅 、壓電效應 、壓電材料 、壓電式奈米發電機 、濕度感測器 、自供電元件 |
| 外文關鍵詞: | one-dimensional ZnO nanorod, aluminum-doped ZnO, piezoelectric effect, piezoelectric material, piezoelectric nanogenerator, humidity sensor, self-powered device |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過摻雜鋁元素來提升氧化鋅奈米柱壓電式奈米發電機的效能,並探討其在濕度感測上的應用可能性。我們採用低成本且安全性高的水熱法合成不同鋁摻雜濃度的ZnO奈米柱,分別為摻雜0.15 mM、0.30 mM和0.45 mM的鋁,加上做為對照組的純氧化鋅奈米柱,一共有四個氧化鋅奈米柱壓電式奈米發電機元件 (AZO-000, AZO-015, AZO-030 和 AZO-045)。
在物性分析結果中,以掃描電子顯微鏡(SEM)觀察到氧化鋅奈米柱沿著垂直基板方向生長,並有六方纖鋅礦結構的六邊形特徵。X射線繞射(XRD)可以證明因為摻雜鋁進入氧化鋅結構中而縮小原子間間距。光致發光光譜(PL)結果可以觀察到在摻雜鋁之後,氧化鋅奈米柱結構中的氧空缺量減少,因為鋁摻雜進入氧化鋅結構中取代鋅的位置,並提供更多的自由載子填補氧空缺。透射電子顯微鏡(TEM)結果可以發現氧化鋅奈米柱結構為單晶排列。X射線光電子能譜(XPS)及感應耦合電漿質譜(ICP-MS)可分析出氧化鋅奈米柱中的鋅、氧、鋁元素。
在電性分析結果中,摻雜鋁的氧化鋅奈米柱具有良好的晶體結構和優異的壓電性能,且隨著鋁摻雜濃度的增加,奈米發電機的輸出功率有顯著提升,摻雜0.45 mM鋁的氧化鋅奈米柱奈米發電機 (AZO-045) 的平均輸出功率達到2600 nW,是未摻雜鋁的氧化鋅奈米柱奈米發電機 (AZO-000) 的173.3倍。此外,將摻雜0.45 mM鋁的氧化鋅奈米柱奈米發電機 (AZO-045) 應用於濕度感測器中,性能會比未摻雜鋁的氧化鋅奈米柱奈米發電機 (AZO-000) 弱,因為其氧空缺受鋁摻雜而減少,氧空缺減少會損失與水分子反應的機會,因此若想要將氧化鋅奈米柱奈米發電機應用於濕度感測元件上,在透過摻雜鋁提升奈米發電機性能的同時需要考量氧空缺的數量。
This study enhances the performance of zinc oxide (ZnO) nanorod (NR) piezoelectric nanogenerator (NG) by doping them with aluminum and investigates their potential applications in humidity sensing. We employed a low-cost and highly safe hydrothermal method to synthesize ZnO NRs with varying aluminum doping concentrations, specifically 0.15 mM, 0.30 mM, and 0.45 mM, along with undoped ZnO NRs as a control group. Four types of ZnO NR piezoelectric NGs were created (AZO-000, AZO-015, AZO-030, and AZO-045).
In the physical property analysis, scanning electron microscopy (SEM) revealed that the ZnO NRs grew perpendicular to the substrate and exhibited the hexagonal characteristics of the wurtzite structure. X-ray diffraction (XRD) confirmed the narrowing of the inter-atomic spacing due to the incorporation of aluminum into the ZnO lattice. Photoluminescence spectroscopy (PL) showed that aluminum doping reduced the number of oxygen vacancies in the ZnO NR structure, as aluminum atoms replace zinc atoms and provide additional free carriers that fill these vacancies. Transmission electron microscopy (TEM) indicated that the ZnO NRs had a single-crystal structure. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS) were used to analyze the presence of zinc, oxygen, and aluminum elements in the ZnO NRs.
In the electrical analysis, the aluminum-doped ZnO NRs demonstrated good crystallinity and excellent piezoelectric properties. As the aluminum doping concentration increased, the output power of the NGs rose significantly. The average output power of the ZnO NR NG (AZO-045) doped with 0.45 mM aluminum reached 2600 nW, which is 173.3 times higher than that of the undoped ZnO NR NG (AZO-000). Furthermore, when the ZnO NR NG (AZO-045) doped with 0.45 mM aluminum was used in a humidity sensor, its performance was inferior to that of the undoped ZnO NR NG (AZO-000) due to the reduction in oxygen vacancies caused by aluminum doping. The decrease in oxygen vacancies reduces the ZnO NRs’ ability to interact with water molecules. Therefore, when aiming to use ZnO NR NGs in humidity sensing applications, it's important to consider the balance between enhancing NG performance through aluminum doping and maintaining an adequate number of oxygen vacancies.
[1] "<GSR-2023_Energy-Supply-Module.pdf>," Renewable Energy Policy Network for the 21st Century, 2023. [Online]. Available: https://www.ren21.net/gsr-2023/annex/downloads/
[2] Z. L. Wang and J. Song, "Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays," Science, vol. 312, no. 5771, pp. 242-246, 2006/04/14 2006, doi: 10.1126/science.1124005.
[3] X. Wang, J. Song, J. Liu, and Z. L. Wang, "Direct-Current Nanogenerator Driven by Ultrasonic Waves," Science, vol. 316, no. 5821, pp. 102-105, 2007, doi: doi:10.1126/science.1139366.
[4] M. Lee, J. Bae, J. Lee, C.-S. Lee, S. Hong, and Z. L. Wang, "Self-powered environmental sensor system driven by nanogenerators," Energy & Environmental Science, vol. 4, no. 9, 2011, doi: 10.1039/c1ee01558c.
[5] Y.-L. Chu, R.-J. Ding, T.-T. Chu, and S.-J. Young, "UV-Enhanced Electrical Performances of ZnO:Ga Nanostructure Nanogenerators by Using Ultrasonic Waves," IEEE Transactions on Electron Devices, vol. 69, no. 10, pp. 5800-5807, 2022, doi: 10.1109/ted.2022.3195966.
[6] Y.-L. Chu, S.-J. Young, H.-C. Chang, S. Arya, Y.-H. Liu, and T.-T. Chu, "Enhanced Nanogenerator Performances of 1-D Al-Doped ZnO Nanorod Arrays through Ultrasonic Wave Systems," ACS Applied Electronic Materials, vol. 5, no. 2, pp. 1277-1285, 2023, doi: 10.1021/acsaelm.2c01746.
[7] C.-L. Hsu, I. L. Su, and T.-J. Hsueh, "Tunable Schottky contact humidity sensor based on S-doped ZnO nanowires on flexible PET substrate with piezotronic effect," Journal of Alloys and Compounds, vol. 705, pp. 722-733, 2017, doi: 10.1016/j.jallcom.2017.02.136.
[8] A. Manbachi and R. S. C. Cobbold, "Development and Application of Piezoelectric Materials for Ultrasound Generation and Detection," Ultrasound, vol. 19, no. 4, pp. 187-196, 2011, doi: 10.1258/ult.2011.011027.
[9] L. z. Kou, W. l. Guo, and C. Li, "Piezoelectricity of ZnO and its nanostructures," in 2008 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, 5-8 Dec. 2008 2008, pp. 354-359, doi: 10.1109/SPAWDA.2008.4775808.
[10] R. Bao et al., "Flexible and Controllable Piezo‐Phototronic Pressure Mapping Sensor Matrix by ZnO NW/p‐Polymer LED Array," Advanced Functional Materials, vol. 25, no. 19, pp. 2884-2891, 2015, doi: 10.1002/adfm.201500801.
[11] K. Jeronimo, V. Koutsos, R. Cheung, and E. Mastropaolo, "PDMS-ZnO Piezoelectric Nanocomposites for Pressure Sensors," Sensors (Basel), vol. 21, no. 17, Aug 31 2021, doi: 10.3390/s21175873.
[12] B. Saravanakumar, R. Mohan, K. Thiyagarajan, and S.-J. Kim, "Fabrication of a ZnO nanogenerator for eco-friendly biomechanical energy harvesting," RSC Advances, vol. 3, no. 37, 2013, doi: 10.1039/c3ra40447a.
[13] B. S. Kang, F. Ren, Y. W. Heo, L. C. Tien, D. P. Norton, and S. J. Pearton, "pH measurements with single ZnO nanorods integrated with a microchannel," Applied Physics Letters, vol. 86, no. 11, 2005, doi: 10.1063/1.1883330.
[14] P. D. Batista and M. Mulato, "ZnO extended-gate field-effect transistors as pH sensors," Applied Physics Letters, vol. 87, no. 14, 2005, doi: 10.1063/1.2084319.
[15] E. Joanni and J. L. Baptista, "ZnO-Li2O humidity sensors," Sensors and Actuators B: Chemical, vol. 17, no. 1, pp. 69-75, 1993/11/01/ 1993, doi: https://doi.org/10.1016/0925-4005(93)85185-D.
[16] S. Dixit, A. Srivastava, A. Srivastava, and R. K. Shukla, "Sol–Gel Derived Zinc Oxide Films and Their Sensitivity to Humidity," Japanese Journal of Applied Physics, vol. 47, no. 7R, 2008, doi: 10.1143/jjap.47.5613.
[17] B. Bott, T. A. Jones, and B. Mann, "The detection and measurement of CO using ZnO single crystals," Sensors and Actuators, vol. 5, no. 1, pp. 65-73, 1984/01/01/ 1984, doi: https://doi.org/10.1016/0250-6874(84)87007-9.
[18] S. Matsushima, K. Abe, K. Kobayashi, and G. Okada, "Oxygen-sensing properties of sputtered ZnO film deposited on sapphire under ultraviolet illumination," Journal of Materials Science Letters, vol. 11, no. 20, pp. 1389-1391, 1992/01/01 1992, doi: 10.1007/BF00729371.
[19] H. Chang et al., "A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure," Nanoscale, 10.1039/C0NR00588F vol. 3, no. 1, pp. 258-264, 2011, doi: 10.1039/C0NR00588F.
[20] T.-P. Chen, K.-H. Lee, S.-P. Chang, S.-J. Chang, and P.-C. Chang, "Effect of surface modification by self-assembled monolayer on the ZnO film ultraviolet sensor," Applied Physics Letters, vol. 103, no. 2, 2013, doi: 10.1063/1.4813107.
[21] A. S. Kamble et al., "Effect of hydroxide anion generating agents on growth and properties of ZnO nanorod arrays," Electrochimica Acta, vol. 149, pp. 386-393, 2014/12/10/ 2014, doi: https://doi.org/10.1016/j.electacta.2014.10.049.
[22] K. Nagarajan and D. Rajeswari, "A Review on Green Synthesis, Biomedical Applications, and Toxicity Studies of ZnO NPs," Bioinorganic Chemistry and Applications, vol. 2018, pp. 1-12, 08/01 2018, doi: 10.1155/2018/3569758.
[23] J.-J. Wu and S.-C. Liu, "Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition," Advanced Materials, vol. 14, no. 3, pp. 215-218, 2002, doi: https://doi.org/10.1002/1521-4095(20020205)14:3<215::AID-ADMA215>3.0.CO;2-J.
[24] R. Wahab, S. G. Ansari, Y.-S. Kim, H.-K. Seo, and H.-S. Shin, "Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method," Applied Surface Science, vol. 253, no. 18, pp. 7622-7626, 2007/07/15/ 2007, doi: https://doi.org/10.1016/j.apsusc.2007.03.060.
[25] A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, "ZnO Nanotube Based Dye-Sensitized Solar Cells," Nano Letters, vol. 7, no. 8, pp. 2183-2187, 2007/08/08 2007, doi: 10.1021/nl070160+.
[26] M. Kaur et al., "Gas dependent sensing mechanism in ZnO nanobelt sensor," Applied Surface Science, vol. 394, pp. 258-266, 2017/02/01/ 2017, doi: https://doi.org/10.1016/j.apsusc.2016.10.085.
[27] A. Menzel, K. Subannajui, F. Güder, D. Moser, O. Paul, and M. Zacharias, "Multifunctional ZnO-Nanowire-Based Sensor," Advanced Functional Materials, vol. 21, no. 22, pp. 4342-4348, 2011, doi: https://doi.org/10.1002/adfm.201101549.
[28] H. Yuan et al., "ZnO Nanosheets Abundant in Oxygen Vacancies Derived from Metal-Organic Frameworks for ppb-Level Gas Sensing," Advanced Materials, vol. 31, no. 11, p. 1807161, 2019, doi: https://doi.org/10.1002/adma.201807161.
[29] X. Zhao, J.-C. Jheng, N.-N. Chou, F.-H. Wang, and C.-F. Yang, "Synthesis of ZnO Nanoflower Arrays on a Protrusion Sapphire Substrate and Application of Al-Decorated ZnO Nanoflower Matrix in Gas Sensors," Sensors, vol. 23, no. 12, p. 5629, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/12/5629.
[30] Y. Y. Villanueva, D.-R. Liu, and P. T. Cheng, "Pulsed laser deposition of zinc oxide," Thin Solid Films, vol. 501, no. 1, pp. 366-369, 2006/04/20/ 2006, doi: https://doi.org/10.1016/j.tsf.2005.07.152.
[31] L. Ding, S. Nicolay, J. Steinhauser, U. Kroll, and C. Ballif, "Relaxing the Conductivity/Transparency Trade-Off in MOCVD ZnO Thin Films by Hydrogen Plasma," Advanced Functional Materials, vol. 23, no. 41, pp. 5177-5182, 2013, doi: https://doi.org/10.1002/adfm.201203541.
[32] B. Olofinjana, U. S. Mbamara, O. Ajayi, C. Lorenzo-Martin, E. I. Obiajuuwa, and E. O. B. Ajayi, "Tribological behavior of N-doped ZnO thin films by metal organic chemical vapor deposition under lubricated contacts," Friction, vol. 5, no. 4, pp. 402-413, 2017/12/01 2017, doi: 10.1007/s40544-017-0154-x.
[33] V. Puspasari, A. Ridhova, A. Hermawan, M. I. Amal, and M. M. Khan, "ZnO-based antimicrobial coatings for biomedical applications," Bioprocess and Biosystems Engineering, vol. 45, no. 9, pp. 1421-1445, 2022/09/01 2022, doi: 10.1007/s00449-022-02733-9.
[34] S. Lee, Y.-H. Joung, Y.-K. Yoon, and W. Choi, "Preparation of a ZnO Nanostructure as the Anode Material Using RF Magnetron Sputtering System," Nanomaterials, vol. 12, no. 2, p. 215, 2022. [Online]. Available: https://www.mdpi.com/2079-4991/12/2/215.
[35] E. K. Droepenu, B. S. Wee, S. F. Chin, K. Y. Kok, and M. F. Maligan, "Zinc Oxide Nanoparticles Synthesis Methods and its Effect on Morphology: A Review," Biointerface Research in Applied Chemistry, 2021.
[36] Z. L. Wang, "Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics," Advanced Functional Materials, vol. 18, no. 22, pp. 3553-3567, 2008, doi: https://doi.org/10.1002/adfm.200800541.
[37] S. Yu, H. Zhang, J. Zhang, and Z. Li, "Effects of pH on High-Performance ZnO Resistive Humidity Sensors Using One-Step Synthesis," Sensors, vol. 19, no. 23, p. 5267, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/23/5267
https://mdpi-res.com/d_attachment/sensors/sensors-19-05267/article_deploy/sensors-19-05267-v2.pdf?version=1575454844.
[38] L. Niu, S. Hong, and M. Wang, "Properties of ZnO with Oxygen Vacancies and Its Application in Humidity Sensor," Journal of Electronic Materials, vol. 50, no. 8, pp. 4480-4487, 2021/08/01 2021, doi: 10.1007/s11664-021-08966-w.
[39] D. Depla, S. Mahieu, and J. E. Greene, "Chapter 5 - Sputter Deposition Processes," in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P. M. Martin Ed. Boston: William Andrew Publishing, 2010, pp. 253-296.
[40] S. Feng, "Introductory Chapter: Basic Theory of Magnetron Sputtering," in Magnetron Sputtering, S. Dr. Feng Ed. Rijeka: IntechOpen, 2018, p. Ch. 4.
[41] Y.-C. Lee et al., "Improved optical and structural properties of ZnO thin films by rapid thermal annealing," Solid State Communications, vol. 143, no. 4, pp. 250-254, 2007/07/01/ 2007, doi: https://doi.org/10.1016/j.ssc.2007.05.021.
[42] X. Meng, C. Yang, W. Fu, Q. Xie, and Q. Chen, "Influence of rapid thermal annealing on structure and interfacial characteristic of ZnO thin films," Surface and Interface Analysis, vol. 45, no. 2, pp. 672-676, 2013, doi: https://doi.org/10.1002/sia.5129.
[43] T. Müller et al., "Study on defect annealing potential and bulk micro defect formation using high temperature RTA conditions for Cz-grown silicon," physica status solidi c, vol. 14, no. 7, p. 1700119, 2017/07/01 2017, doi: https://doi.org/10.1002/pssc.201700119.
[44] T. Boudiar, C. S. Sandu, B. Canut, M. G. Blanchin, V. S. Teodorescu, and J. A. Roger, "Interest of Rapid Thermal Annealing (RTA) for the Elaboration of SnO2:Sb Transparent Conducting Oxide by the Sol-Gel Technique," Journal of Sol-Gel Science and Technology, vol. 26, no. 1, pp. 1067-1070, 2003/01/01 2003, doi: 10.1023/A:1020798405426.
[45] J. A. Thornton, "Sputter Coating— Its Principles and Potential," SAE Transactions, vol. 82, pp. 1787-1805, 1973. [Online]. Available: http://www.jstor.org/stable/44717585.
[46] Y. Yao et al., "Enhanced Photoluminescence and Electrical Properties of n-Al-Doped ZnO Nanorods/p-B-Doped Diamond Heterojunction," Int J Mol Sci, vol. 23, no. 7, Mar 30 2022, doi: 10.3390/ijms23073831.
[47] H. Y. Salah et al., "Improvement of the structural, morphological, optical, and photoelectrochemical properties of Al-doped ZnO nanorods for use in biosensors and solar cells," The European Physical Journal Plus, vol. 137, no. 12, 2022, doi: 10.1140/epjp/s13360-022-03532-7.
[48] P. Bindu and S. Thomas, "Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis," Journal of Theoretical and Applied Physics, vol. 8, no. 4, pp. 123-134, 2014, doi: 10.1007/s40094-014-0141-9.
[49] E. Nowak et al., "A comprehensive study of structural and optical properties of ZnO bulk crystals and polycrystalline films grown by sol-gel method," Applied Physics A, vol. 126, no. 7, 2020, doi: 10.1007/s00339-020-03711-2.
[50] T. A. Abdel-Baset and M. Abdel-Hafiez, "Effect of metal dopant on structural and magnetic properties of ZnO nanoparticles," Journal of Materials Science: Materials in Electronics, vol. 32, no. 12, pp. 16153-16165, 2021, doi: 10.1007/s10854-021-06163-3.
[51] T. Oku, T. Yamada, K. Fujimoto, and T. Akiyama, "Microstructures and Photovoltaic Properties of Zn(Al)O/Cu2O-Based Solar Cells Prepared by Spin-Coating and Electrodeposition," Coatings, vol. 4, no. 2, pp. 203-213, 2014, doi: 10.3390/coatings4020203.
[52] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, "Mechanisms behind green photoluminescence in ZnO phosphor powders," Journal of Applied Physics, vol. 79, no. 10, pp. 7983-7990, 1996, doi: 10.1063/1.362349.
[53] B. J. Jin, S. H. Bae, S. Y. Lee, and S. Im, "Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition," Materials Science and Engineering: B, vol. 71, no. 1, pp. 301-305, 2000/02/14/ 2000, doi: https://doi.org/10.1016/S0921-5107(99)00395-5.
[54] Z. R. Khan, M. S. Khan, M. Zulfequar, and M. Shahid Khan, "Optical and Structural Properties of ZnO Thin Films Fabricated by Sol-Gel Method," Materials Sciences and Applications, vol. 02, no. 05, pp. 340-345, 2011, doi: 10.4236/msa.2011.25044.
[55] S. Wang, G. Qiao, X. Chen, X. Wang, and H. Cui, "Synthesis of ZnO Hollow Microspheres and Analysis of Their Gas Sensing Properties for n-Butanol," Crystals, vol. 10, no. 11, 2020, doi: 10.3390/cryst10111010.
[56] Q. Zhao et al., "Single-crystal ZnO microstructures for improved triethylamine-sensing performance," Journal of Materials Science: Materials in Electronics, vol. 34, no. 10, 2023, doi: 10.1007/s10854-023-10279-z.
[57] W.-Y. Chang, T.-H. Fang, and J.-H. Tsai, "Electromechanical and Photoluminescence Properties of Al-doped ZnO Nanorods Applied in Piezoelectric Nanogenerators," Journal of Low Temperature Physics, vol. 178, no. 3, pp. 174-187, 2015/02/01 2015, doi: 10.1007/s10909-014-1249-7.
[58] C.-C. Chen et al., "ZnO Nanogenerator Prepared from ZnO Nanorods Grown by Hydrothermal Method," Sensors and Materials, vol. 31, no. 3, 2019, doi: 10.18494/sam.2019.2228.
[59] K.-T. Lam, Y.-L. Chu, L.-W. Ji, Y.-J. Hsiao, T.-T. Chu, and B.-W. Huang, "Characterization of nanogenerators based on S-doped zinc oxide nanorod arrays," Microsystem Technologies, vol. 28, no. 1, pp. 395-401, 2022/01/01 2022, doi: 10.1007/s00542-020-04863-0.
校內:2029-08-19公開