| 研究生: |
楊鎮丞 Yang, Chen-Cheng |
|---|---|
| 論文名稱: |
呼吸式質子交換膜燃料電池嵌入平板表面之設計及其性能研究 Design and Performance Studies on Air-breathing PEMFC Embedded into Plate Surface |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 質子交換膜燃料電池 、呼吸式 、強制對流 、極化曲線 、風洞試驗 |
| 外文關鍵詞: | PEMFC, air-breathing, Forced convection, Polarization curve, Wind tunnel test |
| 相關次數: | 點閱:177 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
質子交換膜燃料電池有低溫、低污染、高效率及高能量密度等優勢,一般以為不僅適用於分散式電源與中型動力載具上,也適合作為無人載具及消費性電子產品之能量來源。對小型載具來說,採用呼吸式質子交換膜燃料電池可省掉陰極氧氣供應系統,提高系統的體積及重量功率密度。由於所需的氧氣來自於外部空氣,外部氣流條件便成了影響呼吸式質子交換膜燃料電池性能的重要條件之一。本研究之目的即為探討不同的陰極外部流場對呼吸式質子交換膜燃料電池性能的影響。
本研究成功製作出一嵌入平板表面呼吸式質子交換膜燃料電池,並裝置於循環式風洞中,探討在不同電池擺放方式、陽極氫氣增溼條件、攻角以及外界風速下,對呼吸式質子交換膜燃料電池性能的影響。
由本研究中可發現,外界氣流狀態會影響呼吸式質子交換膜燃料電池陰極氧氣濃度與水平衡,進而影響對其極化曲線。低風速(2.5 m/s)的情況下,可持續供應陰極新鮮氧氣,並將陰極多餘之水分帶走,減少濃度極化現象並提高性能;但強制對流過於旺盛時,反而加速質子交換膜中水分蒸散,增加阻抗而降低電池性能。在0度攻角、陰極端朝下、30 ℃陽極增溼溫度、2.5 m/s風速下達到最大功率密度,89.76 mW/cm2 at 0.406 V。
The advantages of proton exchange membrane fuel cells (PEMFCs), are the lower
operation temperature, the lower pollution, the higher efficiency, the higher energy density,
and suitable for both automotive applications and distributed power generators. PEMFC
might also be an adaptive solution as the power source of unmanned vehicles and
consumer electronics. For small vehicles, to get the oxygen by using air-breathing
PEMFCs would increase the volume and weight power density because oxygen supply
system was not required. While using ambient air as oxygen source, the ambient flow
condition plays an important role in the performance of air-breathing PEMFCs.
In this study, an air-breathing PEMFC was made and embedded into a flat plate which
was further setup into a closed-circuit wind tunnel. By changing the fuel cell position,
anode humidification, angle of attack of plate and ambient flow speed, the influences of
ambient flow field of cathode to the performance of an air-breathing PEMFC will be
discussed respectively.
Results shown that ambient flow condition would affect the oxygen concentration and
water balance of air-breathing PEMFC, and affect the polarization curve. Under the low
wind tunnel speed (2.5 m/s), the forced convection constantly supplies fresh air to cathode
and vaporizes excess water at cathode, abates the phenomenon of concentration
polarization and enhances the performance of fuel cell. However, while the force
convection grows strongly, it would aggravate the vaporization of water in proton
exchange membrane, and increase the impedance of cell and then lower cell power
performance. Under 0° angle of attack, cathode faced up, 2.5 m/s flow speed can reach the
maximum power density, 89.76 mW/cm2 at 0.406 V.
[1] D. Chu, R. Jiang, 1999, “Performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC) Stacks Part I. Evaluation and Simulation of an Air-Breathing PEMFC Stack,” Journal of Power Source, 83, pp.128-133.
[2] M. Noponen, T. Mennola, M. Mikkola, T. Hottinen, P. Lund, 2002, “Measurement of Current Distribution in a Free-Breathing PEMFC,” Journal of Power Sources,106, pp.304-312.
[3] A. Schmitza, M. Tranitza, S.Wagnerb, R. Hahnb, C. Heblinga, 2003, “ Planar Self-Breathing Fuel Cells,” Journal of Power Sources, 118, pp.162-171.
[4] A. Schmitz, S. Wagner, R. Hahn, H. Uzun, C. Hebling, 2004, “Stability of Planar PEMFC in Printed Circuit Board Technology,” Journal of Power Sources, 127, pp.197-205.
[5] A. Schmitz, M. Tranitz, S. Eccarius, C. Hebling, 2006, “Influence of Cathode Opening Size and Wetting Properties of Diffusion Layers on the Performance of Air-breathing PEMFCs,” Journal of Power Sources,154, pp.437-447.
[6] Chen-Yu Chen, Wei-Hsiang Lai, “Studies on The Design of Air-Breathing Miniature PEMFC Stack,” Proceeding of World Hydrogen Technology Convention 2005, Singapore, October 3-6, 2005.
[7] Chen-Yu Chen, Wei-Hsiang Lai, Yun-Che Wen, Biing-Jyh Weng, Huey-Jan Chuang, Ching-Yuan Hsieh, Chien-Chih Kung, “Planar Array Stack Design of Air-Breathing PEMFC,” Proceeding of The 2nd Annual Korea-USA Joint Symposium on Hydrogen & Fuel Cell Technologies, Columbia, South Carolina USA, May 2-5, 2007.
[8] S.U. Jeong, E.A.Chob, H.J.Kimb, T.H. Limb,I.H. Ohb, S.H. Kim, 2006, “Effects of Cathode Open Area and Relative Humidity on the Performance of Air-Breathing Polymer Electrolyte Membrane Fuel Cells,” Journal of Power Sources, 158, pp.348-353.
[9] 黃鎮江,燃料電池,全華科技圖書股份有限公司(2003)。
[10] R. K.A.M. Mallant, 2003, “PEMFC Systems: the Need for High Temperature Polymers as a Consequence of PEMFC Water and Heat Management,” Journal of Power Sources, 118, pp.424–429.
[11] K.T. Adjemian, S. Srinivasan, J. Benziger, A.B. Bocarsly, 2002, “Investigation of PEMFC Operation above 100 ℃ Employing Perfluorosulfonic Acid Silicon Oxide Composite Membranes,” Journal of Power Sources,109, pp. 356–364.
[12] N. Djilali, D. Lu, 2002, “Influence of Heat Transfer on Gas and Water Transport in Fuel Cells,” Int. J. Therm. Sci.,41, pp.29–40.
[13] EG&G Services Parsons, Inc. Fuel Cell Handbook, 6th edition, November 2002.
[14] F. P. Incropera, D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 4th ed, John Willey & Sons, 1996.
[15] A. Kumar, R. G. Reddy, 2003, “Effect of Channel Dimensions and Shape in the Flow-Field Distributor on the Performance of Polymer Electrolyte Membrane Fuel Cells,” Journal of Power Sources, 113, pp.11-18.
[16] K. Tber, A. Oedegaard, M. Hermann, C. Hebling, 2004, “Investigation of Fractal Flow-Fields in Portable Proton Exchange Membrane and Direct Methanol Fuel Cells,” Journal of Power Sources, 131, pp.175–181.
[17] J. D. Anderson. Jr., Fundamentals of Aerodynamics, 3rd ed, McGraw- Hill, 2001.