簡易檢索 / 詳目顯示

研究生: 姚舒婷
Yao, Shu-ting
論文名稱: 非廣效性乙內醯胺酶表現型暨廣效頭孢菌素抗藥性之Escherichia coli或Klebsiella pneumoniae菌血症的抗生素治療選擇
Therapeutic Options for Bacteremia Caused by Extended-spectrum Cephalosporin-resistant Escherichia coli or Klebsiella pneumoniae without Extended-spectrum beta-lactamase Phenotype
指導教授: 高雅慧
Yang, Yea-Huei Kao
柯文謙
Ko, Wen-Chien
廖麗香
Liao, Li-Hsiang
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學研究所
Institute of Clinical Pharmacy
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 137
中文關鍵詞: 廣效頭孢菌素乙內醯胺酶非廣效性乙內醯胺酶表現型
外文關鍵詞: non-ESBL phenotype, beta-lactamases, extended-spectrum cephalosporin
相關次數: 點閱:88下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景
    產生廣效性乙內醯胺酶(extended-spectrum beta-lactamase, ESBL)的菌種越來越普遍出現在院內與社區之感染症,檢測ESBL表現型的標準方法已被建立,carbapenem或ciprofloxacin被建議治療ESBL細菌的感染症。然而,對廣效頭孢菌素(extended-spectrum cephalosporin, ESC)有抗藥性且非ESBL細菌之感染症尚無一致的理想治療藥物。

    研究目的
    評估對廣效頭孢菌素具有抗藥性,且非ESBL表現型的Escherichia coli或Klebsiella pneumoniae菌血症,以第四代頭孢菌素或carbapenem藥物治療的效果。

    研究方法
    研究類型:
    以回顧病歷方式進行的回溯性研究。
    研究對象:
    自民國九十二年七月到九十五年十二月間,收入發生非ESBL表現型的E. coli或K. pneumoniae菌血症的成大醫院病患,其菌血症的細菌敏感性試驗結果,對任一個第三代頭孢菌素具有抗藥性,且對第四代頭孢菌素和carbapenems具有敏感性。只收入病患第一次發生的菌血症,年紀小於16歲病患或病歷記載不完整者予以排除。
    評估指標:
    主要的評估指標為菌血症後14天的死亡率。

    結果
    研究期間,總共收入163個對廣效頭孢菌素具有抗藥性,且非ESBL表現型的菌血症病患,菌血症發生後14天的死亡率為18.4%,30天死亡率為24.5%。依治療藥物分成三組,單獨使用第四代頭孢菌素 (46人)、單獨使用carbapenem (24人)、其他組 (24人)。在基本資料方面,如年齡、性別、潛在疾病、感染來源、危險因子或併發症,在此三組皆無有意義的差異。然而,由APACH II score評估的疾病嚴重程度,在carbapenem組傾向高於第四代頭孢菌素組 (P=0.15)。在14天死亡率方面,第四代頭孢菌素組為2.2%,而carbapenem組為16.7% (P=0.045)。然而,若單看APACH II score大於16分者 (P=0.15)或使用多變項回歸校正後 (P=0.14),兩組14天死亡率並無有意義的差別。

    結論
    感染對廣效頭孢菌素具有抗藥性,且非ESBL表現型的E. coli或K. pneumoniae菌血症患者,在確定性治療時,使用第四代頭孢菌素治療效果不比carbapenem差。

    Background
    Extended-spectrum beta-lactamase (ESBL)-producing organisms become more and more prevalent not only in nosocomial, but also in community-acquired infections. Standard methods for ESBL phenotype detection had been established. A carbapenem or ciprofloxacin is recommended for infections caused by ESBL-producing organisms. However, there is no consensus for optimal therapeutic agents for extended-spectrum cephalosporin (ESC) resistant infections without the ESBL phenotype.

    Objective
    We aimed to evaluate therapeutic outcomes of bacteremia caused by ESC-resistant Escherichia coli or Klebsiella pneumoniae strains without ESBL phenotype treated by a 4th-generation cephalosporin or carbapenem .

    Method
    Design:
    A retrospective review of medical records.
    Subjective:
    Patients with bacteremia caused by E. coli and K. pneumoniae with a specific resistant phenotype from July 2003 to December 2006 at National Cheng Kung University Hospital were included. The specific resistant phenotype indicated the absence of ESBL phenotype, and resistance to one of 3rd-generation cephalosporins and susceptibility to 4th-generation cephalosporins and carbapenems. Only the fist episode of each patient was included in the analysis. Those younger than 16 years old or with incomplete medical records were excluded.
    Endpoint:
    Primary endpoint of the present study was the mortality rate at 14 days.

    Results
    During the study period, 163 patients had bacteremia due to non-ESBL and ESC-resistant organisms. The mortality rate at 14 days after onset was 18.4%, and at 30 days 24.5%. Forty-six patients were treated by 4th-gerenation cephalosporin monotherapy, 24 by carbapenem monotherapy, and 24 by other antibiotics. In baseline data, such as age, gender, underlying diseases, infection sources, risk factors or complications, there was no significant difference among three groups. However, the severity of acute illness, indicated by APACH II score, among patients treated by carbapenem monotherapy tended to be higher than that of those treated by 4th-gerenation cephalosporin monotherapy (P=0.15). The 14-day mortality rate of 4th-gerenation cephalosporin monotherapy was 2.2%, and in contrast that of carbapenem monotherapy was 16.7% (P=0.045). However, the 14-day mortality rates of two groups were not significantly different in patients with severe infections (i.e, APACH II scores ≥16) (P=0.15) or in multiple regression analysis (P=0.14).

    Conclusion
    For bacteremia caused by ESC-resistant E. coli or K. pneumoniae strains without ESBL phenotype, the therapeutic efficacy of 4th-gerneration cephalosporins as definitive therapy was not inferior to that of carbapenems.

    中文摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 縮寫與全名對照表 XI 第壹篇 非廣效性乙內醯胺酶表現型暨廣效頭孢菌素抗藥性之Escherichia coli或 Klebsiella pneumoniae菌血症的抗生素治療選擇 1 第一章 研究背景 1 第二章 文獻回顧 2 第一節 beta-lactam抗生素簡介 2 1.1 藥理作用機轉 2 1.2 結構式與抗菌效果 2 第二節 細菌抗藥性 5 2.1 抗藥性機轉 5 第三節 ESBL與非ESBL表現型菌種 10 3.1 歷史經過 10 3.2 分類 12 3.3 抗生素抗藥性表現型 13 3.4 檢測抗藥性方法 15 3.5 流行病學 17 3.6 產生抗藥性之危險因子 19 3.7 選擇之治療用藥與治療效果 20 第三章 研究目的 27 第四章 研究方法 28 第一節 研究設計 28 1.1 研究類型 28 1.2 研究時間、地點與研究對象 28 1.3 排除標準 28 第二節 研究方法 30 第三節 各變項與評估指標之定義 39 3.1 各變項之定義 39 3.2 評估指標 41 第四節 統計方法 43 4.1 統計模式設定 43 4.2 資料分析方法 43 4.3 統計軟體 44 第五章 研究結果 45 第一節 病患之基本資料 45 第二節 抗藥性試驗結果 55 第三節 分組比較基本性質與結果 57 3.1 經驗性治療(Empirical therapy) 57 3.2 確定性療法(Definitive therapy) 57 3.3 死亡與存活者(Survival vs. fatal) 62 3.4 三天與五天內死亡者 63 第四節 細菌培養前所使用的抗生素之敏感性分析 85 第五節 處方型態分佈 87 第六章 討論 88 第一節 抗藥性盛行率與其他國家、醫院比較 88 第二節 藥物治療效果 89 2.1 研究對象 89 2.2 治療效果 90 2.3 影響預後之原因 92 2.4 評估菌血症適當抗生素治療之方法 93 第三節 與其他研究之討論 94 3.1 類似研究結果之比較 94 3.2 研究設計上之異同 94 第四節 處方型態討論 97 第五節 細菌培養前所用抗生素之敏感性分析 99 第六節 研究限制 100 第七節 未來研究方向 102 第七章 結語 103 第貳篇 臨床藥事服務 104 第一章 護理人員用藥講座 104 1.1 目的 104 1.2 方法 104 1.3 結果與討論 105 第二章 提供藥物諮詢服務 112 2.1 目的 112 2.2 方法 112 2.3 結果與討論 113 參考文獻 116 附錄 128

    1. Paterson DL, Paterson DL. Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs). Clinical Microbiology & Infection 2000;6(9):460-3.
    2. Paterson DL, Bonomo RA, Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clinical Microbiology Reviews 2005;18(4):657-86.
    3. Babic M, Hujer AM, Bonomo RA, Babic M, Hujer AM, Bonomo RA. What's new in antibiotic resistance? Focus on beta-lactamases. Drug Resistance Updates 2006;9(3):142-56.
    4. Dipiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM. Pharmacotherapy: A pathophysiologic approach sixth ed. New York: McGraw-Hill; 2005.
    5. Turner PJ, Turner PJ. Extended-spectrum beta-lactamases. Clinical Infectious Diseases 2005;41 Suppl 4:S273-5.
    6. Jacoby GA, Munoz-Price LS, Jacoby GA, Munoz-Price LS. The new beta-lactamases. New England Journal of Medicine 2005;352(4):380-91.
    7. Neu HC, Neu HC. beta-Lactam antibiotics: structural relationships affecting in vitro activity and pharmacologic properties. Reviews of Infectious Diseases 1986;8 Suppl 3:S237-59.
    8. Onishi HR, Daoust DR, Zimmerman SB, et al. Cefoxitin, a semisynthetic cephamycin antibiotic: resistance to beta-lactamase inactivation. Antimicrobial Agents & Chemotherapy 1974;5(1):38-48.
    9. Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. American Journal of Infection Control 2006;34(5, Supplement 1):S20-S8.
    10. Mandell GL, Bennett JE, Dolin R. Principles and practice of infectious diseases. sixth ed. Philadelphia: Elsevier; 2005.
    11. Sirot D, Sirot D. Extended-spectrum plasmid-mediated beta-lactamases. Journal of Antimicrobial Chemotherapy 1995;36 Suppl A:19-34.
    12. Murray PR, Rosenthal KS, Kobayashi GS, Pfaller MA. Medical microbiology. fourth ed. Missouri: Mosby; 2002.
    13. Nikaido H, Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiology & Molecular Biology Reviews 2003;67(4):593-656.
    14. Srikumar R, Li XZ, Poole K, Srikumar R, Li XZ, Poole K. Inner membrane efflux components are responsible for beta-lactam specificity of multidrug efflux pumps in Pseudomonas aeruginosa. Journal of Bacteriology 1997;179(24):7875-81.
    15. Masuda N, Sakagawa E, Ohya S, et al. Contribution of the MexX-MexY-oprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrobial Agents & Chemotherapy 2000;44(9):2242-6.
    16. Malouin F, Bryan LE, Malouin F, Bryan LE. Modification of penicillin-binding proteins as mechanisms of beta-lactam resistance. Antimicrobial Agents & Chemotherapy 1986;30(1):1-5.
    17. Hartman BJ, Tomasz A, Hartman BJ, Tomasz A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. Journal of Bacteriology 1984;158(2):513-6.
    18. Ambler RP, Ambler RP. The structure of beta-lactamases. Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences 1980;289(1036):321-31.
    19. Bush K, Jacoby GA, Medeiros AA, Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrobial Agents & Chemotherapy 1995;39(6):1211-33.
    20. Joris B, Ghuysen JM, Dive G, et al. The active-site-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochemical Journal 1988;250(2):313-24.
    21. Garau G, Garcia-Saez I, Bebrone C, et al. Update of the standard numbering scheme for class B beta-lactamases. Antimicrobial Agents & Chemotherapy 2004;48(7):2347-9.
    22. Livermore DM, Livermore DM. beta-Lactamases in laboratory and clinical resistance. Clinical Microbiology Reviews 1995;8(4):557-84.
    23. Philippon A, Arlet G, Jacoby GA, Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type beta-lactamases. Antimicrobial Agents & Chemotherapy 2002;46(1):1-11.
    24. Walsh TR, Toleman MA, Poirel L, et al. Metallo-beta-lactamases: the quiet before the storm? Clinical Microbiology Reviews 2005;18(2):306-25.
    25. Neu HC, Neu HC. The new beta-lactamase-stable cephalosporins. Annals of Internal Medicine 1982;97(3):408-19.
    26. Jacoby GA, Jacoby GA. Extended-spectrum beta-lactamases and other enzymes providing resistance to oxyimino-beta-lactams. Infectious Disease Clinics of North America 1997;11(4):875-87.
    27. Rupp ME, Fey PD, Rupp ME, Fey PD. Extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae: considerations for diagnosis, prevention and drug treatment. Drugs 2003;63(4):353-65.
    28. Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews 2001;14(4):933-51.
    29. Medeiros AA, Medeiros AA. Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics. Clinical Infectious Diseases 1997;24 Suppl 1:S19-45.
    30. Jacobs C, Frere JM, Normark S, Jacobs C, Frere JM, Normark S. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible beta-lactam resistance in gram-negative bacteria. Cell 1997;88(6):823-32.
    31. Bobrowski MM, Matthew M, Barth PT, et al. Plasmid-determined beta-lactamase indistinguishable from the chromosomal beta-lactamase of Escherichia coli. Journal of Bacteriology 1976;125(1):149-57.
    32. Levesque R, Roy PH, Letarte R, et al. A plasmid-mediated cephalosporinase from Achromobacter species. Journal of Infectious Diseases 1982;145(5):753-61.
    33. Knothe H, Shah P, Krcmery V, et al. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 1983;11(6):315-7.
    34. Bauernfeind A, Chong Y, Schweighart S, Bauernfeind A, Chong Y, Schweighart S. Extended broad spectrum beta-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 1989;17(5):316-21.
    35. Papanicolaou GA, Medeiros AA, Jacoby GA, Papanicolaou GA, Medeiros AA, Jacoby GA. Novel plasmid-mediated beta-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy beta-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrobial Agents & Chemotherapy 1990;34(11):2200-9.
    36. Nelson EC, Elisha BG, Nelson EC, Elisha BG. Molecular basis of AmpC hyperproduction in clinical isolates of Escherichia coli. Antimicrobial Agents & Chemotherapy 1999;43(4):957-9.
    37. Girlich D, Karim A, Spicq C, et al. Plasmid-mediated cephalosporinase ACC-1 in clinical isolates of Proteus mirabilis and Escherichia coli. European Journal of Clinical Microbiology & Infectious Diseases 2000;19(11):893-5.
    38. Nordmann P, Poirel L, Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clinical Microbiology & Infection 2002;8(6):321-31.
    39. Shibata N, Doi Y, Yamane K, et al. PCR typing of genetic determinants for metallo-beta-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. Journal of Clinical Microbiology 2003;41(12):5407-13.
    40. Tessier F, Arpin C, Allery A, et al. Molecular characterization of a TEM-21 beta-lactamase in a clinical isolate of Morganella morganii.[see comment]. Antimicrobial Agents & Chemotherapy 1998;42(8):2125-7.
    41. Perilli M, Segatore B, de Massis MR, et al. TEM-72, a new extended-spectrum beta-lactamase detected in Proteus mirabilis and Morganella morganii in Italy. Antimicrobial Agents & Chemotherapy 2000;44(9):2537-9.
    42. Palzkill T, Thomson KS, Sanders CC, et al. New variant of TEM-10 beta-lactamase gene produced by a clinical isolate of proteus mirabilis. Antimicrobial Agents & Chemotherapy 1995;39(5):1199-200.
    43. Morosini MI, Canton R, Martinez-Beltran J, et al. New extended-spectrum TEM-type beta-lactamase from Salmonella enterica subsp. enterica isolated in a nosocomial outbreak. Antimicrobial Agents & Chemotherapy 1995;39(2):458-61.
    44. Marchandin H, Carriere C, Sirot D, et al. TEM-24 produced by four different species of Enterobacteriaceae, including Providencia rettgeri, in a single patient. Antimicrobial Agents & Chemotherapy 1999;43(8):2069-73.
    45. Bonnet R, De Champs C, Sirot D, et al. Diversity of TEM mutants in Proteus mirabilis. Antimicrobial Agents & Chemotherapy 1999;43(11):2671-7.
    46. Mugnier P, Dubrous P, Casin I, et al. A TEM-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa. Antimicrobial Agents & Chemotherapy 1996;40(11):2488-93.
    47. Paterson DL, Hujer KM, Hujer AM, et al. Extended-spectrum beta-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type beta-lactamases. Antimicrobial Agents & Chemotherapy 2003;47(11):3554-60.
    48. Huang ZM, Mao PH, Chen Y, et al. Study on the molecular epidemiology of SHV type beta-lactamase-encoding genes of multiple-drug-resistant acinetobacter baumannii. Chung-Hua Liu Hsing Ping Hsueh Tsa Chih Chinese Journal of Epidemiology 2004;25(5):425-7.
    49. Poirel L, Lebessi E, Castro M, et al. Nosocomial outbreak of extended-spectrum beta-lactamase SHV-5-producing isolates of Pseudomonas aeruginosa in Athens, Greece. Antimicrobial Agents & Chemotherapy 2004;48(6):2277-9.
    50. Bonnet R, Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrobial Agents & Chemotherapy 2004;48(1):1-14.
    51. Bauernfeind A, Chong Y, Lee K, Bauernfeind A, Chong Y, Lee K. Plasmid-encoded AmpC beta-lactamases: how far have we gone 10 years after the discovery? Yonsei Medical Journal 1998;39(6):520-5.
    52. M'Zali FH, Heritage J, Gascoyne-Binzi DM, et al. Transcontinental importation into the UK of Escherichia coli expressing a plasmid-mediated AmpC-type beta-lactamase exposed during an outbreak of SHV-5 extended-spectrum beta-lactamase in a Leeds hospital. Journal of Antimicrobial Chemotherapy 1997;40(6):823-31.
    53. Yong D, Lim Y, Song W, et al. Plasmid-mediated, inducible AmpC beta-lactamase (DHA-1)-producing Enterobacteriaceae at a Korean hospital: wide dissemination in Klebsiella pneumoniae and Klebsiella oxytoca and emergence in Proteus mirabilis. Diagnostic Microbiology & Infectious Disease 2005;53(1):65-70.
    54. Martinez-Martinez L, Pascual A, Hernandez-Alles S, et al. Roles of beta-lactamases and porins in activities of carbapenems and cephalosporins against Klebsiella pneumoniae. Antimicrobial Agents & Chemotherapy 1999;43(7):1669-73.
    55. Pangon B, Bizet C, Bure A, et al. In vivo selection of a cephamycin-resistant, porin-deficient mutant of Klebsiella pneumoniae producing a TEM-3 beta-lactamase. Journal of Infectious Diseases 1989;159(5):1005-6.
    56. Martinez-Martinez L, Hernandez-Alles S, Alberti S, et al. In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum-cephalosporins.[see comment]. Antimicrobial Agents & Chemotherapy 1996;40(2):342-8.
    57. Chen Y, Delmas J, Sirot J, et al. Atomic resolution structures of CTX-M beta-lactamases: extended spectrum activities from increased mobility and decreased stability. Journal of Molecular Biology 2005;348(2):349-62.
    58. Danel F, Hall LM, Duke B, et al. OXA-17, a further extended-spectrum variant of OXA-10 beta-lactamase, isolated from Pseudomonas aeruginosa. Antimicrobial Agents & Chemotherapy 1999;43(6):1362-6.
    59. Hall LM, Livermore DM, Gur D, et al. OXA-11, an extended-spectrum variant of OXA-10 (PSE-2) beta-lactamase from Pseudomonas aeruginosa. Antimicrobial Agents & Chemotherapy 1993;37(8):1637-44.
    60. Thomson KS, Smith Moland E, Thomson KS, Smith Moland E. Version 2000: the new beta-lactamases of Gram-negative bacteria at the dawn of the new millennium. Microbes & Infection 2000;2(10):1225-35.
    61. Martinez-Martinez L, Pascual A, Jacoby GA, Martinez-Martinez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet 1998;351(9105):797-9.
    62. Yu W-L, Chuang Y-C, Walther-Rasmussen J. Extended-spectrum beta-lactamases in Taiwan: epidemiology, detection, treatment and infection control. Journal of Microbiology, Immunology & Infection 2006;39:267-77.
    63. Queenan AM, Foleno B, Gownley C, et al. Effects of inoculum and beta-lactamase activity in AmpC- and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates tested by using NCCLS ESBL methodology. Journal of Clinical Microbiology 2004;42(1):269-75.
    64. Hernandez-Alles S, Conejo M, Pascual A, et al. Relationship between outer membrane alterations and susceptibility to antimicrobial agents in isogenic strains of Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy 2000;46(2):273-7.
    65. Hanson ND, Hanson ND. AmpC beta-lactamases: what do we need to know for the future? Journal of Antimicrobial Chemotherapy 2003;52(1):2-4.
    66. Perez-Perez FJ, Hanson ND, Perez-Perez FJ, Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. Journal of Clinical Microbiology 2002;40(6):2153-62.
    67. Jones RN, Mendes C, Turner PJ, et al. An overview of the Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) Program: 1997-2004. Diagnostic Microbiology & Infectious Disease 2005;53(4):247-56.
    68. Goossens H, Grabein B. Prevalence and antimicrobial susceptibility data for extended-spectrum [beta]-lactamase- and AmpC-producing Enterobacteriaceae from the MYSTIC Program in Europe and the United States (1997-2004). Diagnostic Microbiology and Infectious Disease 2005;53(4):257-64.
    69. Stelling JM, Travers K, Jones RN, et al. Integrating Escherichia coli antimicrobial susceptibility data from multiple surveillance programs. Emerging Infectious Diseases 2005;11(6):873-82.
    70. Hirakata Y, Matsuda J, Miyazaki Y, et al. Regional variation in the prevalence of extended-spectrum beta-lactamase-producing clinical isolates in the Asia-Pacific region (SENTRY 1998-2002). Diagnostic Microbiology & Infectious Disease 2005;52(4):323-9.
    71. Pfaller MA, Sader HS, Fritsche TR, et al. Antimicrobial activity of cefepime tested against ceftazidime-resistant Gram-negative clinical strains from North American Hospitals: report from the SENTRY Antimicrobial Surveillance Program (1998-2004). Diagnostic Microbiology & Infectious Disease 2006;56(1):63-8.
    72. Deshpande LM, Jones RN, Fritsche TR, Sader HS. Occurrence of plasmidic AmpC type [beta]-lactamase-mediated resistance in Escherichia coli: report from the SENTRY Antimicrobial Surveillance Program (North America, 2004). International journal of antimicrobial agents 2006;28(6):578-81.
    73. 楊采菱. 全國微生物抗藥性監測計畫(Taiwan Surveillance of Antimicrobial Resistance; TSAR). 感染控制雜誌;第15卷(第五期).
    74. Lauderdale TL, Clifford McDonald L, Shiau YR, et al. The status of antimicrobial resistance in Taiwan among gram-negative pathogens: the Taiwan surveillance of antimicrobial resistance (TSAR) program, 2000. Diagnostic Microbiology & Infectious Disease 2004;48(3):211-9.
    75. Yan JJ, Hsueh PR, Lu JJ, et al. Extended-spectrum beta-lactamases and plasmid-mediated AmpC enzymes among clinical isolates of Escherichia coli and Klebsiella pneumoniae from seven medical centers in Taiwan. Antimicrobial Agents & Chemotherapy 2006;50(5):1861-4.
    76. Hsueh PR, Chen WH, Luh KT. Relationships between antimicrobial use and antimicrobial resistance in Gram-negative bacteria causing nosocomial infections from 1991-2003 at a university hospital in Taiwan. International journal of antimicrobial agents 2005;26(6):463-72.
    77. Safdar N, Maki DG, Safdar N, Maki DG. The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Annals of Internal Medicine 2002;136(11):834-44.
    78. Bisson G, Fishman NO, Patel JB, et al. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species: risk factors for colonization and impact of antimicrobial formulary interventions on colonization prevalence. Infection Control & Hospital Epidemiology 2002;23(5):254-60.
    79. Mangeney N, Niel P, Paul G, et al. A 5-year epidemiological study of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates in a medium- and long-stay neurological unit. Journal of Applied Microbiology 2000;88(3):504-11.
    80. Lucet JC, Chevret S, Decre D, et al. Outbreak of multiply resistant enterobacteriaceae in an intensive care unit: epidemiology and risk factors for acquisition. Clinical Infectious Diseases 1996;22(3):430-6.
    81. Pena C, Pujol M, Ricart A, et al. Risk factors for faecal carriage of Klebsiella pneumoniae producing extended spectrum beta-lactamase (ESBL-KP) in the intensive care unit. Journal of Hospital Infection 1997;35(1):9-16.
    82. Menashe G, Borer A, Yagupsky P, et al. Clinical significance and impact on mortality of extended-spectrum beta lactamase-producing Enterobacteriaceae isolates in nosocomial bacteremia. Scandinavian Journal of Infectious Diseases 2001;33(3):188-93.
    83. D'Agata E, Venkataraman L, DeGirolami P, et al. The molecular and clinical epidemiology of enterobacteriaceae-producing extended-spectrum beta-lactamase in a tertiary care hospital. Journal of Infection 1998;36(3):279-85.
    84. De Champs C, Rouby D, Guelon D, et al. A case-control study of an outbreak of infections caused by Klebsiella pneumoniae strains producing CTX-1 (TEM-3) beta-lactamase. Journal of Hospital Infection 1991;18(1):5-13.
    85. Schiappa DA, Hayden MK, Matushek MG, et al. Ceftazidime-resistant Klebsiella pneumoniae and Escherichia coli bloodstream infection: a case-control and molecular epidemiologic investigation. Journal of Infectious Diseases 1996;174(3):529-36.
    86. Nathisuwan S, Burgess DS, Lewis JS, 2nd, Nathisuwan S, Burgess DS, Lewis JS, 2nd. Extended-spectrum beta-lactamases: epidemiology, detection, and treatment. Pharmacotherapy 2001;21(8):920-8.
    87. Lin MF, Huang ML, Lai SH, Lin MF, Huang ML, Lai SH. Risk factors in the acquisition of extended-spectrum beta-lactamase Klebsiella pneumoniae: a case-control study in a district teaching hospital in Taiwan. Journal of Hospital Infection 2003;53(1):39-45.
    88. Du B, Long Y, Liu H, et al. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae bloodstream infection: risk factors and clinical outcome. Intensive Care Medicine 2002;28(12):1718-23.
    89. Pena C, Pujol M, Ardanuy C, et al. Epidemiology and successful control of a large outbreak due to Klebsiella pneumoniae producing extended-spectrum beta-lactamases. Antimicrobial Agents & Chemotherapy 1998;42(1):53-8.
    90. Martinez JA, Aguilar J, Almela M, et al. Prior use of carbapenems may be a significant risk factor for extended-spectrum beta-lactamase-producing Escherichia coli or Klebsiella spp. in patients with bacteraemia. Journal of Antimicrobial Chemotherapy 2006;58(5):1082-5.
    91. Lautenbach E, Patel JB, Bilker WB, et al. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clinical Infectious Diseases 2001;32(8):1162-71.
    92. Ramphal R, Ambrose PG, Ramphal R, Ambrose PG. Extended-spectrum beta-lactamases and clinical outcomes: current data. Clinical Infectious Diseases 2006;42 Suppl 4:S164-72.
    93. Jacoby GA, Chow N, Waites KB, Jacoby GA, Chow N, Waites KB. Prevalence of plasmid-mediated quinolone resistance. Antimicrobial Agents & Chemotherapy 2003;47(2):559-62.
    94. Lautenbach E, Strom BL, Bilker WB, et al. Epidemiological investigation of fluoroquinolone resistance in infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Clinical Infectious Diseases 2001;33(8):1288-94.
    95. Meyer KS, Urban C, Eagan JA, et al. Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins.[see comment]. Annals of Internal Medicine 1993;119(5):353-8.
    96. Cosgrove SE, Cosgrove SE. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clinical Infectious Diseases 2006;42 Suppl 2:S82-9.
    97. Paterson DL, Ko WC, Von Gottberg A, et al. Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory. Journal of Clinical Microbiology 2001;39(6):2206-12.
    98. Ambrose PG, Bhavnani SM, Jones RN, Ambrose PG, Bhavnani SM, Jones RN. Pharmacokinetics-pharmacodynamics of cefepime and piperacillin-tazobactam against Escherichia coli and Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases: report from the ARREST program. Antimicrobial Agents & Chemotherapy 2003;47(5):1643-6.
    99. Paterson DL, Ko WC, Von Gottberg A, et al. Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum beta-lactamases. Clinical Infectious Diseases 2004;39(1):31-7.
    100. Kotapati S, Kuti JL, Nightingale CH, Nicolau DP. Clinical implications of extended spectrum beta-lactamase (ESBL) producing Klebsiella species and Escherichia coli on cefepime effectiveness. Journal of Infection 2005;51(3):211-7.
    101. Burgess DS, Hall IIRG. In vitro killing of parenteral beta-lactams against standard and high inocula of extended-spectrum beta-lactamase and non-esbl producing klebsiella pneumoniae. Diagnostic Microbiology and Infectious Disease 2004;49(1):41-6.
    102. Bedenic B, Beader N, Zagar Z, Bedenic B, Beader N, Zagar Z. Effect of inoculum size on the antibacterial activity of cefpirome and cefepime against Klebsiella pneumoniae strains producing SHV extended-spectrum beta-lactamases. Clinical Microbiology & Infection 2001;7(11):626-35.
    103. Thomson KS, Moland ES, Thomson KS, Moland ES. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrobial Agents & Chemotherapy 2001;45(12):3548-54.
    104. Naas T, Nordmann P, Naas T, Nordmann P. OXA-type beta-lactamases. Current Pharmaceutical Design 1999;5(11):865-79.
    105. Yu WL, Pfaller MA, Winokur PL, et al. Cefepime MIC as a predictor of the extended-spectrum beta-lactamase type in Klebsiella pneumoniae, Taiwan. Emerging Infectious Diseases 2002;8(5):522-4.
    106. Rodriguez-Bano J, Navarro MD, Romero L, et al. Bacteremia due to extended-spectrum beta -lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge.[see comment]. Clinical Infectious Diseases 2006;43(11):1407-14.
    107. Goethaert K, Van Looveren M, Lammens C, et al. High-dose cefepime as an alternative treatment for infections caused by TEM-24 ESBL-producing Enterobacter aerogenes in severely-ill patients. Clinical Microbiology & Infection 2006;12(1):56-62.
    108. Elkhaili H, Kamili N, Linger L, et al. In vitro time-kill curves of cefepime and cefpirome combined with amikacin, gentamicin or ciprofloxacin against Klebsiella pneumoniae producing extended-spectrum beta-lactamase. Chemotherapy 1997;43(4):245-53.
    109. Yan JJ, Ko WC, Jung YC, et al. Emergence of Klebsiella pneumoniae isolates producing inducible DHA-1 beta-lactamase in a university hospital in Taiwan. Journal of Clinical Microbiology 2002;40(9):3121-6.
    110. Kang CI, Pai H, Kim SH, et al. Cefepime and the inoculum effect in tests with Klebsiella pneumoniae producing plasmid-mediated AmpC-type beta-lactamase. Journal of Antimicrobial Chemotherapy 2004;54(6):1130-3.
    111. Pai H, Kang CI, Byeon JH, et al. Epidemiology and clinical features of bloodstream infections caused by AmpC-type-beta-lactamase-producing Klebsiella pneumoniae. Antimicrobial Agents & Chemotherapy 2004;48(10):3720-8.
    112. Zanetti G, Bally F, Greub G, et al. Cefepime versus imipenem-cilastatin for treatment of nosocomial pneumonia in intensive care unit patients: a multicenter, evaluator-blind, prospective, randomized study. Antimicrobial Agents & Chemotherapy 2003;47(11):3442-7.
    113. Hsueh PR, Teng LJ, Chen CY, et al. Pandrug-resistant Acinetobacter baumannii causing nosocomial infections in a university hospital, Taiwan. Emerging Infectious Diseases 2002;8(8):827-32.
    114. Knaus WA, Draper EA, Wagner DP, et al. APACHE II: a severity of disease classification system. Critical Care Medicine 1985;13(10):818-29.
    115. Le Gall JR, Lemeshow S, Saulnier F, Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study.[erratum appears in JAMA 1994 May 4;271(17):1321]. JAMA 1993;270(24):2957-63.
    116. Paterson DL, Paterson DL. The role of antimicrobial management programs in optimizing antibiotic prescribing within hospitals. Clinical Infectious Diseases 2006;42 Suppl 2:S90-5.
    117. Alvarez M, Tran JH, Chow N, et al. Epidemiology of conjugative plasmid-mediated AmpC beta-lactamases in the United States. Antimicrobial Agents & Chemotherapy 2004;48(2):533-7.
    118. Jean SS, Teng LJ, Hsueh PR, et al. Antimicrobial susceptibilities among clinical isolates of extended-spectrum cephalosporin-resistant Gram-negative bacteria in a Taiwanese University Hospital. Journal of Antimicrobial Chemotherapy 2002;49(1):69-76.
    119. Kang CI, Kim SH, Park WB, et al. Bloodstream infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for mortality and treatment outcome, with special emphasis on antimicrobial therapy. Antimicrobial Agents & Chemotherapy 2004;48(12):4574-81.
    120. Roghmann MC, Roghmann MC. Predicting methicillin resistance and the effect of inadequate empiric therapy on survival in patients with Staphylococcus aureus bacteremia.[see comment]. Archives of Internal Medicine 2000;160(7):1001-4.
    121. Kim SH, Park WB, Lee KD, et al. Outcome of inappropriate initial antimicrobial treatment in patients with methicillin-resistant Staphylococcus aureus bacteraemia. Journal of Antimicrobial Chemotherapy 2004;54(2):489-97.
    122. Fang CT, Shau WY, Hsueh PR, et al. Early empirical glycopeptide therapy for patients with methicillin-resistant Staphylococcus aureus bacteraemia: impact on the outcome. Journal of Antimicrobial Chemotherapy 2006;57(3):511-9.
    123. Osih RB, McGregor JC, Rich SE, et al. Impact of empiric antibiotic therapy on outcomes in patients with Pseudomonas aeruginosa bacteremia. Antimicrobial Agents & Chemotherapy 2007;51(3):839-44.
    124. Lodise TP, McKinnon PS, Swiderski L, et al. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clinical Infectious Diseases 2003;36(11):1418-23.
    125. Kollef MH, Sherman G, Ward S, et al. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 1999;115(2):462-74.
    126. Kang CI, Kim SH, Park WB, et al. Bloodstream infections caused by antibiotic-resistant gram-negative bacilli: risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome.[see comment]. Antimicrobial Agents & Chemotherapy 2005;49(2):760-6.
    127. Ibrahim EH, Sherman G, Ward S, et al. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting.[see comment]. Chest 2000;118(1):146-55.
    128. McGregor JC, Rich SE, Harris AD, et al. A Systematic Review of the Methods Used to Assess the Association between Appropriate Antibiotic Therapy and Mortality in Bacteremic Patients. In; 2007:329-37.
    129. Lacy CF, Armstrong LL, Goldman MP, Lance LL. Drug information handbook. 13th ed. United states: Lexi-Comp; 2005.
    130. Allard J, Carthey J, Cope J, et al. Medication errors: causes, prevention and reduction. British Journal of Haematology 2002;116(2):255-65.
    131. McCarter TG, Centafont R, Daly FN, et al. Reducing medication errors: a regional approach for hospitals. Drug Safety 2003;26(13):937-50.
    132. Weller TM, Jamieson CE, Weller TMA, Jamieson CE. The expanding role of the antibiotic pharmacist. Journal of Antimicrobial Chemotherapy 2004;54(2):295-8.
    133. Knox K, Lawson W, Dean B, et al. Multidisciplinary antimicrobial management and the role of the infectious diseases pharmacist--a UK perspective.[see comment]. Journal of Hospital Infection 2003;53(2):85-90.

    下載圖示 校內:2009-08-15公開
    校外:2009-08-15公開
    QR CODE