研究生: |
林威志 Lin, Wei-Zhi |
---|---|
論文名稱: |
相轉變對富鋰層狀結構氧化物正極材料的電化學性質影響之研究 Effect of Phase Transformation on Electrochemical Properties of Li-Rich Layered Oxides Cathode for Li-Ion Batteries Application |
指導教授: |
方冠榮
Fung, Kuan-Zong |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 鋰離子電池 、富鋰正極材料 、相變 |
外文關鍵詞: | Lithium-ion batteries, lithium-rich cathode material, phase transformation |
相關次數: | 點閱:84 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用溶膠凝膠法在800oC空氣下煅燒12小時成功製備不同複合比例xLi2MnO3(1-x)LiNi1/3Mn1/3Co1/3O2 (x = 0, 0.3, 0.5, 0.7 and 1.0) 富鋰層狀正極材料,通過X-ray繞射儀(XRD) 和電化學測試等檢測方式了解所得樣品的晶體結構與電化學性能,XRD結果顯示Li2MnO3組成含量提高時,可觀察到(020)面及(110)面之繞射峰強度增高及2θ = 64o~66o的繞射峰往高角度偏移,其原因可歸咎於超晶格結構的增加及平均離子半徑的下降。充放電結果顯示Li2MnO3組成的添加可以提升層狀正極材料的電容量及穩定性,同時Li2MnO3組成也會造成不可逆反應,使電容量下降。因此研究結果顯示到在x = 0.5 的比例下具有最高的電容量,放電電容量高達250.1 mAh/g。
另一方面,本研究使用Li1.2Ni0.13Mn0.54Co0.13O2 (5:5)富鋰正極材料分析材料的衰退行為,充放電結果顯示在0.05C充放電條件下,放電電容量從276 mAh/g (第1圈)下降到169 mAh/g (第30圈),TEM分析結果證明富鋰層狀正極材料在充放電循環後材料表面會由layer層狀結構相變成spinel尖晶石結構以及表面超晶格結構的消失,其現象可以用過渡金屬離子的遷移到過渡金屬離子層及鋰離子層中的鋰離子空缺來解釋。HRTEM顯示充放電循環後的材料可以觀察到非晶相區域及晶格扭曲的現象,本研究推測非晶相區域及晶格扭曲可能會阻礙鋰離子的移動,造成越來越少的鋰離子可以作嵌出嵌入的充放電行為,因此造成電容量的衰退。
Recently, lithium-rich layered oxides have became attractive cathode materials for high storage energy applications. Lithium rich layered oxides materials, represented by the general formula xLi2MnO3‧(1 - x)LiMO2 in which M is Mn、Ni and Co are of interest for both high-power and high capacity lithium ion cells. In this study, a series of cathode materials with molecular notation of xLi2MnO3(1-x)LiNi1/3Mn1/3Co1/3O2 (x = 0, 0.3, 0.5, 0.7 and 1.0) were synthesized by sol–gel method to investigate their structure and electrochemical properties. The crystal structure of the samples were examined by X-ray diffraction. It is show that the structure of xLi2MnO3(1-x)LiNi1/3Mn1/3Co1/3O2 possessed the composite characteristic composite. Its electrochemical performance is examined with galvanostatic charge/discharge. Increasing Li2MnO3 content may stabilize Li rich structure to increase capacity but the irreversible reaction of Li2MnO3 would reduce capacity. These factors resulted that 0.5Li2MnO30.5LiNi1/3Mn1/3Co1/3O2 cathode exhibited best electrochemical performance with discharge capacity 250 mAh/g.. To understand the capacity fading for Li-rich cathode materials, Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as a cathode material for Li-ion battery has been investigated. It exhibited high initial charge/discharge capacity of 327 mAh/g and 276 mAh/g at 0.05C rate (15mA/g) respectively. After 30 cycles, the discharge capacity decayed 169 mAh/g. Transmission electron microscopy (TEM) images along with nano beam diffraction pattern (NDP) results showed the presence of spinel phases on the particles surface, indicating a layered to spinel like phase transformation. The results obtained from derivation of reaction equation and diffraction studies provided the fundamental understanding of the structural transformation pathways in Li-rich cathodes and the lattice distortion and amorphous region were found by HRTEM image, which may block removing of Li ions then resulting capacity fading.
1. Holdren, J.P., Energy and sustainability. SCIENCE-NEW YORK THEN WASHINGTON-, 2007. 315(5813): p. 737.
2. Ginley, D., M.A. Green, and R. Collins, Solar energy conversion toward 1 terawatt. Mrs Bulletin, 2008. 33(04): p. 355-364.
3. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
4. Armand, M. and J.-M. Tarascon, Building better batteries. Nature, 2008. 451(7179): p. 652-657.
5. Goodenough, J.B. and Y. Kim, Challenges for rechargeable Li batteries†. Chemistry of Materials, 2009. 22(3): p. 587-603.
6. Xu, B., Develop high energy high power Li ion battery cathode materials a first principles. 2012.
7. Son, M.Y., et al., Effects of ratios of Li 2 MnO 3 and Li (Ni 1/3 Mn 1/3 Co 1/3) O 2 phases on the properties of composite cathode powders in spray pyrolysis. Electrochimica Acta, 2013. 103: p. 110-118.
8. Thackeray, M., et al., Lithium insertion into manganese spinels. Materials Research Bulletin, 1983. 18(4): p. 461-472.
9. Goodenough, J., et al., Lithium insertion/extraction reactions with manganese oxides. Revue de Chimie minerale, 1984. 21(4): p. 435-455.
10. Padhi, A., et al., Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. Journal of the Electrochemical Society, 1997. 144(5): p. 1609-1613.
11. Zhu, J., Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries. 2014.
12. Johnson, C.S., et al., Anomalous capacity and cycling stability of xLi 2 MnO 3•(1− x) LiMO 2 electrodes (M= Mn, Ni, Co) in lithium batteries at 50 C. Electrochemistry Communications, 2007. 9(4): p. 787-795.
13. Thackeray, M.M., et al., Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. Journal of Materials Chemistry, 2007. 17(30): p. 3112.
14. Deng, H., et al., Nanostructured lithium nickel manganese oxides for lithium-ion batteries. Journal of The Electrochemical Society, 2010. 157(4): p. A447-A452.
15. Yu, H. and H. Zhou, High-Energy Cathode Materials (Li2MnO3–LiMO2) for Lithium-Ion Batteries. The Journal of Physical Chemistry Letters, 2013. 4(8): p. 1268-1280.
16. Armstrong, A.R., et al., Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li [Ni0. 2Li0. 2Mn0. 6] O2. Journal of the American Chemical Society, 2006. 128(26): p. 8694-8698.
17. Bohang, S., L. ManOn, and L. Li, Layer-Structured Cathode Materials for Energy Storage, in Electrochemically Enabled Sustainability. 2014, CRC Press. p. 191-222.
18. Xu, B., et al., Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy & Environmental Science, 2011. 4(6): p. 2223.
19. Grey, C.P., et al., Electrochemical Activity of Li in the Transition-Metal Sites of O3 Li [Li (1− 2x)/3Mn (2− x)/3Ni x] O 2. Electrochemical and solid-state letters, 2004. 7(9): p. A290-A293.
20. Kang, K. and G. Ceder, Factors that affect Li mobility in layered lithium transition metal oxides. Physical Review B, 2006. 74(9): p. 094105.
21. Bréger, J., et al., High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li 2 MnO 3–Li [Ni 1/2 Mn 1/2] O 2 solid solution. Journal of Solid State Chemistry, 2005. 178(9): p. 2575-2585.
22. Madhu, C., J. Garrett, and V. Manivannan, Synthesis and characterization of oxide cathode materials of the system (1-x-y)LiNiO2•xLi2MnO3•yLiCoO2. Ionics, 2010. 16(7): p. 591-602.
23. Warren, B., X-ray Diffraction Dover publications. Inc New York, 1990.
24. Fell, C.R., et al., Synthesis–Structure–Property Relations in Layered, “Li-excess” Oxides Electrode Materials Li[Li[sub 1/3−2x/3]Ni[sub x]Mn[sub 2/3−x/3]]O[sub 2] (x=1/3, 1/4, and 1/5). Journal of The Electrochemical Society, 2010. 157(11): p. A1202.
25. R.D. Shannon, C.T.P., Effective Ionic Radii in Oxides and Fluorides. Acta Cryst. (1969). B25, 925, 1969.
26. Liu, J., et al., Degradation and Structural Evolution of xLi2MnO3{middle dot}(1-x)LiMn1/3Ni1/3Co1/3O2 during Cycling. Journal of the Electrochemical Society, 2013. 161(1): p. A160-A167.
27. V. Massarotti, D.C., M. Bini, G. Chiodelli, C. B. Azzoni,M. C. Mozzati and A. Paleari,, Electric and Magnetic Properties of LiMn2O4 and Li2MnO3 Type Oxides. J. Solid State Chem., 1997, 131,94–100, 1997.
28. Yabuuchi, N., et al., Solid-State Chemistry and Electrochemistry of LiCo1∕ 3Ni1∕ 3Mn1∕ 3O2 for Advanced Lithium-Ion Batteries II. Preparation and Characterization. Journal of the Electrochemical Society, 2005. 152(7): p. A1434-A1440.
29. Lu, Z. and J.R. Dahn, Understanding the anomalous capacity of Li/Li [Ni x Li (1/3− 2x/3) Mn (2/3− x/3)] O 2 cells using in situ X-ray diffraction and electrochemical studies. Journal of The Electrochemical Society, 2002. 149(7): p. A815-A822.
30. Song, B., M.O. Lai, and L. Lu, Influence of Ru substitution on Li-rich 0.55Li2MnO3•0.45LiNi1/3Co1/3Mn1/3O2 cathode for Li-ion batteries. Electrochimica Acta, 2012. 80: p. 187-195.
31. Yu, H., et al., High-energy 'composite' layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries. Phys Chem Chem Phys, 2012. 14(18): p. 6584-95.
32. Boulineau, A., et al., First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett, 2013. 13(8): p. 3857-63.
33. Yan, P., et al., Probing the Degradation Mechanism of Li2MnO3Cathode for Li-Ion Batteries. Chemistry of Materials, 2015. 27(3): p. 975-982.
34. Ghanty, C., R.N. Basu, and S.B. Majumder, Performance of Wet Chemical Synthesized xLi2MnO3-(1-x)Li(Mn0.375Ni0.375Co0.25)O2 (0.0 <= x <= 1.0) Integrated Cathode for Lithium Rechargeable Battery. Journal of the Electrochemical Society, 2012. 159(7): p. A1125-A1134.
35. Shojan, J., et al., Lithium-ion battery performance of layered 0.3 Li 2 MnO 3–0.7 LiNi 0.5 Mn 0.5 O 2 composite cathode prepared by co-precipitation and sol–gel methods. Materials Letters, 2013. 104: p. 57-60.
36. Jeong, J.-H., et al., The influence of compositional change of 0.3 Li 2 MnO 3• 0.7 LiMn 1− x Ni y Co 0.1 O 2 (0.2≤ x≤ 0.5, y= x− 0.1) cathode materials prepared by co-precipitation. Journal of Power Sources, 2011. 196(7): p. 3439-3442.
37. Wang, Y., et al., High capacity spherical Li[Li0.24Mn0.55Co0.14Ni0.07]O2 cathode material for lithium ion batteries. Solid State Ionics, 2013. 233: p. 12-19.
38. Wu, Y. and A. Manthiram, Effect of surface modifications on the layered solid solution cathodes (1− z) Li [Li 1/3 Mn 2/3] O 2−(z) Li [Mn 0.5− y Ni 0.5− y Co 2y] O 2. Solid State Ionics, 2009. 180(1): p. 50-56.
39. Wu, Y., A.V. Murugan, and A. Manthiram, Surface modification of high capacity layered Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 cathodes by AlPO4. Journal of The Electrochemical Society, 2008. 155(9): p. A635-A641.
40. Song, B., M.O. Lai, and L. Lu, Influence of Ru substitution on Li-rich 0.55 Li 2 MnO 3• 0.45 LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode for Li-ion batteries. Electrochimica Acta, 2012. 80: p. 187-195.
41. Tran, N., et al., Mechanisms associated with the “plateau” observed at high voltage for the overlithiated Li1. 12 (Ni0. 425Mn0. 425Co0. 15) 0.88 O2 system. Chemistry of Materials, 2008. 20(15): p. 4815-4825.
42. Yang, X.-Q., X. Sun, and J. McBreen, New phases and phase transitions observed in Li 1− x CoO 2 during charge: in situ synchrotron X-ray diffraction studies. Electrochemistry communications, 2000. 2(2): p. 100-103.
43. Gabrisch, H., R. Yazami, and B. Fultz, Hexagonal to Cubic Spinel Transformation in Lithiated Cobalt Oxide TEM Investigation. Journal of The electrochemical society, 2004. 151(6): p. A891-A897.
44. Wang, H., et al., Electron microscopic characterization of electrochemically cycled LiCoO 2 and Li (Al, Co) O 2 battery cathodes. Journal of power sources, 1999. 81: p. 594-598.
45. Ben Yahia, H., M. Shikano, and H. Kobayashi, Phase Transition Mechanisms in Li x CoO2 (0.25≤ x≤ 1) Based on Group–Subgroup Transformations. Chemistry of Materials, 2013. 25(18): p. 3687-3701.
46. Yan, P., et al., Probing the Degradation Mechanism of Li2MnO3 Cathode for Li-Ion Batteries. Chemistry of Materials, 2015. 27(3): p. 975-982.
47. Boulineau, A., et al., First evidence of manganese–nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano letters, 2013. 13(8): p. 3857-3863.
48. Yamada, A., Lattice instability in Li (Li x Mn 2− x) O 4. Journal of Solid State Chemistry, 1996. 122(1): p. 160-165.