| 研究生: |
高資謙 Kao, Tz-Chian |
|---|---|
| 論文名稱: |
鐘擺型液體黏彈頻譜儀於奈米液體顆粒大小分析之研究 PARTICLE SIZE ANALYSIS OF NANOFLUIDS VIA LIQUID PENDULUM TYPE VISCOELASTIC SPECTROSCOPY |
| 指導教授: |
王雲哲
Wang, Yun-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 非牛頓流體 、流變 、複變黏滯係數 、複變剪力模數 、正切消散模數 、線黏彈力學 、共振 、流固耦合 |
| 外文關鍵詞: | Non-Newtonian fluid, Nanoparticle, Rheology, Complex viscosity, Complex shear modulus, Loss tangent, Linear viscoelasticity, Resonance, Fluid structure interaction |
| 相關次數: | 點閱:131 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究發展稱之為鐘擺式黏彈流體頻譜量測技術(LPVS)的實驗方式,並透過這項技術量測流體的流變性質以及顆粒懸浮液的顆粒大小。液體的黏彈流變性質以及懸浮液中的顆粒分散細化性質一直是工業界相關產品生產及應用中相當重要的參數,同時,亦有大量與這些性質相關的研究論文持續不斷的發表。因此,不管業界或是學術界均非常重視這些流體以及懸浮液體的相關性質。據調查,目前線上即時量測液體流變性質及顆粒分散細化情形的技術仍有非常多可以改善的地方。本研究所開發之新型流變量測方法(LPVS)透過電磁交互作用施予浸泡於液體中的震盪子不同的震盪頻率,使震盪子產生扭矩或是彎矩的施力行為,進而使震盪子與周圍環境中的液體產生流固耦合著交互作用,透過雷射及接收器來量測且記錄震盪子的位移情形,實驗中所得到的固體震盪子之力與位移關係與液體流變性質及顆粒分散細化情形的關聯性為本研究發展的一個重點部分,主要實驗量測不同奈米顆粒大小的奈米顆粒液體(顆粒大小分別為10 nm、30 nm、50 nm、80 nm、100 nm),另外也討論同樣顆粒大小在不同濃度下所表現的行為(10 wt%、20 wt%、30 wt%)。
The study is developing a new measurement method, named Liquid Pendulum-type Viscoelastic Spectroscopy (LPVS), to experimentally determine rheological properties of complex liquids and detect particle size in suspensions. Viscoelastic properties of liquids and particles dispersion and refinement of suspension fluids are of importance in industrial applications. In addition, there are many related research papers published continuously. One can imagine that both industry and academia attach great importance to the relative properties of these fluids and suspensions. This new measurement method applies different frequencies of the core immersed in the surrounding liquid through electromagnetic interaction and measures the results of the solid-liquid interaction through the laser-based displacement measurement system. The relationship between the force and displacement of the solid core obtained in the experiment and the rheological properties of liquids and the suspensions are of importance in the development of this study. The main experiment measures nanoparticle liquids with different nanoparticle sizes (particle size 10 nm, 30 nm, 50 nm, 80 nm, 100 nm, respectively). The behavior of the same particle size at different concentrations is also discussed (10 wt%, 20 wt%, 30 wt%).
[1] J. Woirgard, Y. Sarrazin, and H. Chaumet. Apparatus for the measurement of internal friction
as a function of frequency between 10^-5 and 10 Hz. Review of Scientific Instruments,
48(10):1322, 1977.
[2] M. Brodt, L. S. Cook, and R. S. Lakes. Apparatus for measuring viscoelastic properties
over ten decades: refinements. Journal of Materials Science, 66(11):5292–5297, 1995.
[3] R. S. Lakes. Viscoelastic Materials. Cambridge University Press, Cambridge, UK, 2009.
[4] Y. C. Wang, C. C. Ko, H. K. Wu, and Y. T. Wu. Pendulum-type viscoelastic spectroscopy
for damping measurement of solids. Japan Society of Mechanical Engineers, 13:s137–
s142, 2013.
[5] Y. C. Wang, C. C. Ko, and L. M. Shiau. Accurate determination of torsion and pure
bending moment for viscoelastic measurements. International Journal of Modern Physics:
Conference Series, 24:1360016, 2013.
[6] P. Kao. Studies of Pendulum-type Viscoelastic Spectroscopy for Fluids. NCKU Master’s
Degree Thesis, 7 2016.
[7] H. H. Winter. Three views of viscoelasticity for cox–merz materials. Rheologica Acta,
48:241–243, 2008.
[8] R. Byron Bird, Robert C. Armstrong, and Ole Hassager. Dynamics of Polymeric Liquids,
Volume 1: Fluid Mechanics. Wiley-Interscience, 1987.
[9] A. Franck. Understanding rheology of structured fluids. TA Instruments, 2015.
[10] J. Krishnan, A. Deshpande, and P. Kumar. Rheology of Complex Fluids. Springer, 2010.
[11] I. Dufour, A. Maali, Y. Amarouchene, C. Ayela, B. Caillard, A. Darwiche, M. Guirardel,
H. Kellay, E. Lemaire, F. Mathieu, C. Pellet, D. Saya, M. Youssry, L. Nicu, and A. Colin.
The microcantilever: A versatile tool for measuring the rheological properties of complex
fluids. Journal of Sensors, pages 719–898, 2012.
[12] M. Pavlik. The dependence of suspension viscosity on particle size, shear rate, and solvent
viscosity. DePaul University Master’s Degree Thesis, 05 2018.
[13] S. Cinar. Rheological behavior of oxide nanopowder suspensions. Iowa State University
Thesis, 2013.
[14] T. M. Squires and T. G. Mason. Fluid mechanics of microrheology. Annual Review of
Fluid Mechanics, 42(1):413–438, 2010.
[15] R. R. Rahalkar. Correlation between the crossover modulus and the molecular weight
distribution using the doi-edwards theory of reptation and the rouse theory. Rheologica
Acta, 28(2):166–175, 1989.
[16] M. Kontopoulou. Applied Polymer Rheology. John Wiley, 2011.
[17] B. J. Kirby. Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices.
Cambridge University Press, 2010.
[18] R. D. Blevins. Flow-induced Vibration. Krieger Publishing Company, 1994.
[19] V. S. Ramachandran and J. J. Beaudoin. Handbook of Analytical Techniques in Concrete
Science and Technology. William Andrew Publisher, 2001.
校內:2023-08-04公開