簡易檢索 / 詳目顯示

研究生: 廖慕蓉
Liao, Mu-Jung
論文名稱: 淨水污泥燒製富β-C2S水泥之研究
Production of belite rich cement by using water treatment plant sludge
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 112
中文關鍵詞: β-C2S淨水污泥水泥熟料X 光繞射定量分析
外文關鍵詞: XRD, water treatment plant sludge, cement raw material, belite
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣在穩定的供水型態下每年產生大量淨水污泥,此淨水程序之副產物屬於公告再利用之一般事業廢棄物,主要元素組成為矽、鋁、鐵等,符合水泥生料所需之主要成分,具有再利用作為水泥原料之價值。本研究利用淨水污泥替代部分水泥原料,調控生料組成並於不同燒結溫度下燒製富β-C2S之水泥。透過游離石灰含量評估熟料燒成度,並利用reference intensity ratio (RIR)技術定量矽酸鈣晶相。
    研究結果顯示,淨水污泥經過適當的配比計算後,可取代部分原料製成水泥生料。將生料之水泥化學參數設定於LSF=0.7~0.9、SR=1.8、AR=0.6之範圍,使用最大淨水污泥取代比例,配合適當燒結溫度、LSF值可使生料中氧化鈣完全反應,進而降低燒成熟料之游離石灰含量。LSF=0.7~0.9之生料在1200ºC即可合成C2S,含量皆在40%以上。以1300ºC燒成之熟料隨LSF提高至0.9則開始生成C3S。但燒成之C2S容易在降溫過程中轉換為γ相,因此藉由改質劑Cr2O3之添加,可避免C2S於降溫時發生相轉換,而在室溫下保存β相。歸納實驗結果,生料之LSF設為0.7、0.8並添加1%之Cr2O3,分別於1200、1300ºC燒結可生成以β-C2S為主要晶相之水泥熟料。

    In recent years, the water supply in Taiwan was stable, and therefore the water treatment plants produced enormous amount of sludge. This sludge, namely water treatment plant sludge (WTPS), was generated from the purification processes and it should be considered for reusing or recycling. WTPS can be reused as a raw material in cement production because its main compositions are Si, Al, and Fe. In this research, WTPS partially replaced the cement raw materials on the basis of controlled parameters. The raw meal was sintered at lower temperature to produce belite-rich clinker. In order to evaluate the burnability of the clinker, the free lime content was analyzed. The quantification of calcium-silicate phases was performed by X-ray diffraction and the reference intensity ratio (RIR) method.
    Based on the results, WTPS can partially replace the raw materials to form cement raw meal. The parameters of the raw meal, LSF, SR, and AR, were controlled at 0.7-0.9, 1.8, and 0.6, respectively. When using the maximum replacement of WTPS, proper LSF values and sintering temperatures can make the calcium oxide react completely, and consequently reduce the free lime in the clinker. The main phases of clinkers sintered at 1200ºC are belite. However, when the LSF of raw meal is 0.9, the clinker sintered at 1300ºC contains some C3S. The C2S would mainly exist in γ phase at room temperature. To prevent the transformation to γ-C2S from taking place, Cr2O3 was doped as a stabilizer to replace Si4+ of C2S and to preserve β-C2S at room temperature. By means of doping with 1% Cr2O3, most C2S in clinkers can be stabilized in β phase at room temperature.

    中文摘要.................................................Ⅰ 英文摘要.................................................Ⅱ 誌謝.....................................................Ⅲ 目錄.....................................................Ⅳ 表目錄...................................................Ⅶ 圖目錄...................................................Ⅷ 第一章 前言.............................................1 1-1 研究動機與目的......................................1 1-2 研究內容............................................2 第二章 文獻回顧.........................................3 2-1 淨水污泥之特性與處置................................3 2-1-1 污泥之來源與產出..................................3 2-1-2 污泥之物化特性....................................6 2-1-3 污泥處理與再利用現況..............................8 2-2 水泥熟料燒製........................................13 2-2-1 卜特蘭水泥之製造..................................13 2-2-2 生料組成與調配....................................15 2-2-3 燒結條件控制......................................20 2-2-4 微量成分對熟料礦物生成之影響......................23 2-3 熟料礦物性質........................................25 2-3-1 晶體結構與相轉換..................................25 2-3-2 水化特性與抗壓強度發展............................27 2-3-3 熟料之礦物組成與工程用途之關係....................31 2-4 矽酸二鈣相轉變之控制................................33 2-4-1 晶格離子置換......................................33 2-4-2 晶粒成長控制......................................36 2-4-3 再熔融法(Remelting).............................37 2-5 小結 ................................................38 第三章 研究材料、設備與方法.............................39 3-1 研究架構與實驗流程..................................39 3-2 研究材料與設備......................................41 3-2-1 淨水污泥採樣及前處理..............................41 3-2-2 實驗藥品與儀器設備................................41 3-3 生料配比設計與製備..................................44 3-3-1 參數選擇與配比計算................................44 3-3-2 生料製備及添加改質劑..............................46 3-4 熟料燒製與處理......................................47 3-4-1 燒製條件控制......................................47 3-4-2 熟料添加改質劑及熱處理............................48 3-5 分析方法............................................48 3-5-1 水分、灰分與可燃分分析............................48 3-5-2 化學組成分析......................................49 3-5-3 游離石灰含量分析..................................50 3-5-4 雷射粒徑分析......................................51 3-5-5 X光螢光分析......................................51 3-5-6 X光粉末繞射分析..................................52 3-5-7 晶相鑑定與定量分析................................54 第四章 結果與討論.......................................57 4-1 淨水污泥基本特性與合成生料晶相潛勢..................57 4-1-1 淨水污泥之物化特性................................57 4-1-2 淨水污泥之晶相組成................................61 4-1-3 合成水泥生料之晶相潛勢............................62 4-1-4 小結..............................................63 4-2 燒製條件對游離石灰含量之影響........................64 4-2-1 淨水污泥取代比例之影響............................64 4-2-2 生料石灰飽和度之影響..............................69 4-2-3 燒結溫度之影響....................................71 4-2-4 小結..............................................73 4-3 燒成熟料晶相種類及含量之探討........................74 4-3-1 熟料中晶相種類與燒製條件之關係....................74 4-3-2 矽酸鈣與氧化鈣晶相之定量..........................81 4-3-3 以化學法與晶相定量分析游離石灰含量之比較..........87 4-3-4 小結..............................................90 4-4 改質劑添加對矽酸二鈣晶相轉換之控制..................91 4-4-1 生料添加改質劑改質................................91 4-4-2 熟料添加改質劑及熱處理...........................101 4-4-3 小結.............................................106 第五章 結論與建議......................................107 參考文獻................................................109

    Barros, A. M., Espinosa, D. C. R., Tenorio, J. A. S., Effect of Cr2O3 and NiO additions on the phase transformations at high temperature in Portland cement. Cement and Concrete Research, 34(10), 1795-1801, 2004.
    Chan, C. J., Kriven, W. M., Young, J. F., Physical Stabilization of the β to γ Transformation in Dicalcium Silicate. Journal of the American Ceramic Society, 75(6), 1621-1627, 1992.
    Dharmappa, H. B., Hasia, A., Hagare, P., Water treatment plant residuals management. Water Science and Technology, 35(8), 45-56, 1997.
    Ftikos, C., Philippou, T., Preparation and hydration study of rich C2S cements. Cement and Concrete Research, 20(6), 934-940, 1990.
    Fukuda, K., Ito, S., Highly reactive remelted belite. Journal of the American Ceramic Society, 82(3), 637-640, 1999.
    Fukuda, K., Ito, S., Improvement in reactivity and grindability of belite-rich cement by remelting reaction. Journal of the American Ceramic Society, 82(8), 2177-2180, 1999.
    Fukuda, K., Ito, S., Taguchi, H., Thermoelasticity of belite in Portland cement clinker. Cement and Concrete Research, 28(8), 1141-1145, 1998.
    Gies, A., Knoefel, D., Influence of alkalies on the compositon of belite-rich cement clinkers and the technological properties of the resulting cements. Cement and Concrete Research, 16(3), 411-422, 1986.
    Gies, A., Knoefel, D., Influence of sulfur on the composition of belite-rich cement clinkers and the technological properties of the resulting cements. Cement and Concrete Research, 17(2), 317-328, 1987.
    Guerrero, A., Goni, S., Campillo, I., Moragues, A., Belite cement clinker from coal fly ash of high Ca content. Optimization of synthesis parameters. Environmental Science and Technology, 38(11), 3209-3213, 2004.
    Kolovos, K., Loutsi, P., Tsivilis, S., Kakali, G., The effect of foreign ions on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system: Part I. Anions. Cement and Concrete Research, 31(3), 425-429, 2001.
    Kolovos, K., Tsivilis, S., Kakali, G., The effect of foreign ions on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system: Part II: Cations. Cement and Concrete Research, 32(3), 463-469, 2002.
    Kolovos, K. G., Tsivilis, S., Kakali, G., Study of clinker dopped with P and S compounds. Journal of Thermal Analysis and Calorimetry, 77(3), 759-766, 2004.
    Lai, G. C., Nojiri, T., Nakano, K. I., Studies of the stability of β-Ca2SiO4 doped by minor ions. Cement and Concrete Research, 22(5), 743-754, 1992.
    Lin, C. K., Chen, J. N., Lin, C. C., NMR and XRD study of solidification/stabilization of chromium with Portland cement and β-C2S. Journal of Hazardous Materials, 48(1-3), 137-147, 1996.
    Maki, I., Fukuda, K., Imura, T., Yoshida, H., Ito, S., Formation of belite clusters from quartz grains in portland cement clinker. Cement and Concrete Research, 25(4), 835-840, 1995.
    Ozturk, A., Suyadal, Y., Oguz, H., Formation of belite phase by using phosphogypsum and oil shale. Cement and Concrete Research, 30(6), 967-971, 2000.
    Philippou, T., Marinos, J., Kostakis, G., On the strength behaviour and phase composition of low lime saturation clinkers. Cement and Concrete Research, 18(5), 804-811, 1988.
    Popescu, C. D., Muntean, M., Sharp, J. H., Industrial trial production of low energy belite cement. Cement and Concrete Composites, 25(7), 689-693, 2003.
    Park, C. H., Oh, C. B., Park H. S., Han K. S., Ahn J. W., A Study on the Manufacture of Clinker Using Low Grade Limestone and Waste Paper Sludge. Resources Processing, 51(3), 163-168, 2004.
    Rajczyk, K., Effect of a reducing atmosphere on the properties of dicalcium orthosilicate. Cement and Concrete Research, 20(1), 36-44, 1990.
    Shirasaka, T., Hanehara, S., Uchikawa, H., Influence of six minor and trace elements in raw material on the composition and structure of clinker. World Cement, 27(3), 104-115, 1996.
    Snyder, R. L., Bish, D. L., Quantitative-Analysis. Reviews in Mineralogy, 20, 101-144, 1989.
    Stephan, D., Mallmann, R., Knoefel, D., Haerdtl, R., High intakes of Cr, Ni, and Zn in clinker: Part I. Influence on burning process and formation of phases. Cement and Concrete Research, 29(12), 1949-1957, 1999.
    Stephan, D., Mallmann, R., Knoefel, D., Haerdtl, R., High intakes of Cr, Ni, and Zn in clinker: Part II. Influence on the hydration properties. Cement and Concrete Research, 29(12), 1959-1967, 1999.
    Wang, K. S., Sun, C. J., Liu, C. Y., Effects of the type of sintering atmosphere on the chromium leachability of thermal-treated municipal solid waste incinerator fly ash. Waste Management, 21(1), 85-91, 2001.
    Zivica, V., Janotka, I., Behaviour of hydrated β-C2S in some aggressive media. World Cement, 28(8), 77-80, 1997.
    Cullity, B. D., Stock, S. R., Elements of X-Ray Differaction, Prentice Hall. New Jersey. 2001.
    Hewlett, P. C., Chemistry of cement and concrete. New Yark, 1988.
    Tayolr, H. F. W., Cement chemistry. San Diego. 1990.
    Stutzman, P. E., Guide for X-Ray powder diffraction analysis of Portland cement and clinker. NISTIR 5755, National Institute of Standards and Technology. 1996.
    王明光,王敏昭,實用儀器分析,合記圖書出版社,2003。
    江康裕,淨水污泥燒製磚材之材料特性研究,自來水會刊,2004。
    林忠逸,水處理工程廢棄污泥及煉鋼廢爐渣燒製環保水泥之材料特性研究,國立中央大學環境工程研究所,碩士論文,2003
    洪佩瑜,淨水污泥及其燒結體對銅、鉛離子之吸附反應,國立臺灣大學環境工程研究所,碩士論文,2000。
    高肇藩,給水工程,三民書局,1990。
    康世芳,淨水污泥餅再利用技術調查及應用於台北自來水事業處淨水廠可行性評估,2001。
    陳宜晶,利用添加劑提升淨水污泥燒結之材料品質研究,逢甲大學環境工程與科學學系,碩士論文,2004。
    黃兆龍,混凝土性質與行為,詹氏書局,2005。
    黃忠信,土木材料,三民書局,1998。
    鄭宏德,自來水淨水場脫水污泥資源再利用之可行性研究,第19屆自來水研究發表會論文集,2002。
    駱尚廉、楊萬發,自來水工程,茂昌圖書,2000。
    龔人俠,水泥化學概論,台灣區水泥同業公會,1997。
    台北自來水事業統計年報,台北市自來水事業處,2006。
    行政院環保署事業廢棄物管制資訊網http://waste.epa.gov.tw/prog/IndexFrame.asp

    下載圖示 校內:立即公開
    校外:2007-08-13公開
    QR CODE