簡易檢索 / 詳目顯示

研究生: 方梓庭
Fang, Tzu-Ting
論文名稱: 利用環形剪力試驗探討草嶺卓蘭層砂頁岩互層受震力學特性之研究
Investigate the Seismic Mechanical Characteristic of the Choulan Sandstone-Shale Interface at Tsaoling Using Ring Shear Tests
指導教授: 吳建宏
Wu, Jian-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 162
中文關鍵詞: 集集地震草嶺地滑環形剪力試驗砂頁岩互層重模殘餘剪力強度
外文關鍵詞: Chi-Chi earthquake, Tsaoling to slip, Ring shear test, Sand-shale, Remold, Residual shear strength
相關次數: 點閱:202下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究區域主要位於雲林縣古坑鄉境內之草嶺山,為一大型順向坡主要為卓蘭層所構成,1999年所發生的地震規模7.3集集大地震作用下產生大規模地滑,是世界上地震引發大規模的地滑活動之一。
    卓蘭層為砂岩、頁岩及其互層所組成,於草嶺的現地調查中發現集集地震引發草嶺地滑的滑動面大部分位於卓蘭層砂頁岩互層中,由於頁岩試體不易鑽製,故本實驗採取重模(remold)頁岩方式進行。Chigira et al. (2003)指出1999年集集地震前草嶺有滑動過,故試驗假設該滑動面在集集地震前已經處於殘餘強度,故使用平整剪動面求取砂頁岩互層界面的殘餘強度。
    本實驗將製作環形頁岩試體,將結合環形砂岩,模擬砂頁岩互層。地震前在滑動體現地量測的地下位不明,亦無法確定是否有地下水存在,所以將試驗分為氣乾與浸水24小時狀態,以模擬現地滑動面在氣乾與浸水狀態的受剪行為,再將試體並於不同正向應力控制下,探討於集集地震作用下草嶺滑動面之動態力學性質與破壞機制。
    由環剪試驗結果的得知,當氣乾狀態時,砂頁岩互層之殘餘抗剪角為33.4。;在浸水狀態下,殘餘抗剪角僅剩下24.0。由此可知,在現地的情況中,試體含水量亦是影響殘餘剪力強度之原因。結果推測砂頁岩互層於氣乾狀態下滑動面應產生於砂岩與頁岩的界面上,浸水24小時之後,剪動過後靜態試驗摩擦角取決於砂岩材料,判斷草嶺地滑於受水影響後亦可能由砂頁岩互層中,砂岩內部產生地滑破壞。由動態環形剪力試驗應力路徑圖分析結果可得知,卓蘭層砂頁岩互層氣乾與浸水狀態之靜態試驗破壞準則適用於動態試驗的力學行為,得知氣乾與浸水狀態靜、動態破壞準則一致。其中浸水動態相較於氣乾動態環剪試驗剪位移量增加許多,可見浸水狀態下的動態試驗發現,地震力與水的雙重影響亦然導致邊坡長距離之滑動。

    The study areas are mainly located in Taoling of Yunlin County,It’s large forward slope and Formation is mainly composed of Cholan formation. Chi-Chi earthquake magnitude 7.3 earthquake in 1999. It’s world's earthquake triggered massive land slide one of all.
    Cholan Formation of sandstone, shale、sandstone and shale formed, Tsaoling sliding surface Cholan Formation sandstone and shale in between, And shale specimens is not easy to drill, so experiment to re-mold the shale to test. Literature indicates that Chi-Chi earthquake in 1999 Tsaoing has been sliding, so the test assuming the sliding surface in theresidual strength before the Chi-Chi earthquake. So use smooth cutting action and therefore to strike a surface of sand-shale interface residual strength.
    The experimental specimens manufactured ring shale, simulation sandstone and shale interbedded. So the test is divided into air-dry and soaked for 24 hours the state, to simulate the sliding surface is air-dried and soaked in the state of the shear behavior, and positive specimens and in different stress control, the earthquake caused Tsaoing to discuss. The sliding surface of the dynamic mechanical properties and failure mechanisms.
    By the ring shear test results that when the air-dry state, the residual sand shale shear angle of 33.4 degrees; Soaked in water 24 hours state,residual shear leaving only angle of 24.0. It can be seen, on-site case water content will affect the residual shear strength. Guess sand shale in air-dry state of the sliding surface should result in the sandstone and shale interface, Soaked in water 24 hours after,Static test friction angle depends on the sandstone material. Analysis of the sandstone and shale interbedded being affected by water, mainly sandstone internally generated damage in the Tsaoing. The results can be learned by the dynamic ring shear test stress path diagram, Cholan Formation of sand and shale gas flooded the state's dry static tests, failure criteria for the mechanical behavior of the dynamic test. Air-dry state and static and dynamic immersion failure criterion is the same. Flooded state of the dynamic tests show, the impact of the earthquake and water led to the slope of the double impact of the sliding distance.

    目錄 摘要 I 誌謝 IV 目錄 VI 表目錄 X 圖目錄 XII 第1章 緒論 1 1-1 研究動機與目的 1 1-2 研究流程圖 3 1-3 研究範圍與內容 4 第2章 文獻回顧 5 2-1 草嶺地滑概述 5 2-1-1 草嶺地層分布 5 2-1-2 草嶺地質構造 9 2-1-2-1 草嶺背斜與楓仔崙向斜 9 2-1-2-2 草嶺地滑區地質構造 10 2-1-3 草嶺滑動簡史 12 2-1-4 卓蘭層岩石力學性質文獻 14 2-2 砂頁岩互層之概述 15 2-2-1 砂頁岩互層之形成 15 2-2-2 砂頁岩之性質 15 2-2-3 砂頁岩之破壞因素 17 2-3 草嶺滑動面之常態地下水位存在 19 2-4 殘餘剪力強度與穩定狀態 21 2-4-1 殘餘剪力強度 21 2-5 環狀試體之受力情形與尺寸條件 24 2-5-1 環狀試體之受力情形 25 2-5-2 環狀試體之尺寸條件 27 第3章 試驗試體、儀器與試驗規畫 29 3-1 岩塊來源與試體製作方法 29 3-1-1 草嶺卓蘭層砂頁岩互層 29 3-1-2 實驗試體製作 31 3-1-2-1 環形砂岩製作 31 3-1-2-2 重模環形頁岩製作 36 3-1-2-2-1 重模環形頁岩資料 43 3-2 試驗儀器 46 3-2-1 重模頁岩製作器具 46 3-2-2 消散耐久性試驗機 48 3-2-3 實體顯微鏡 49 3-2-4 MTS載重試驗機 50 3-2-5 環形剪力試驗系統 52 3-3 實驗規劃與步驟 55 3-3-1 物理基本性質試驗 55 3-3-2 消散耐久性試驗 56 3-3-3 環形剪力試驗 57 3-3-3-1 氣乾狀態下環形剪力試驗 60 3-3-3-1-1 氣乾狀態下靜態環剪試驗 60 3-3-3-1-2 氣乾狀態下動態環剪試驗 67 3-3-3-2 浸水狀態下環形剪力試驗 71 3-3-3-2-1 浸水狀態下靜態環形剪力試驗 72 3-3-3-2-2 浸水狀態下動態環剪試驗 77 3-3-3-2-3 過40號頁岩篩重模試體於靜、動態環剪試驗 81 第4章 試驗結果與分析 87 4-1 基本性質試驗 87 4-1-1 物性試驗結果 87 4-1-2 消散耐久試驗結果與討論 88 4-2 環剪試驗砂岩、頁岩剪動面受剪變化 91 4-2-1 環形試體剪動面變化情形 92 4-3 環形剪力試驗結果 97 4-3-1 靜態環形剪力試驗 97 4-3-1-1 氣乾狀態 98 4-3-1-2 浸水狀態 109 4-3-1-2-1 過40號頁岩篩重模試體於靜態環剪試驗 118 4-3-2 動態環形剪力試驗 124 4-3-2-1 氣乾狀態 125 4-3-2-1-1 固定正向應力及改變剪應力之動態環剪試驗結果 125 4-3-2-1-2 同時改變剪應力及正向應力動態環剪試驗結果 128 4-3-2-2 浸水狀態 132 4-3-2-2-1 固定正向應力及改變剪應力動態環剪試驗結果 132 4-3-2-2-2 同時改變剪應力及正向應力動態環剪試驗結果 134 4-3-2-2-3 氣乾與浸水狀態之動態環剪試驗結果 137 4-3-2-2-4 過40號篩重模頁岩浸水狀態下動態試驗 138 4-4 綜合討論 141 4-4-1 氣乾狀態與浸水狀態之靜態環剪結果比較 141 4-4-2 動態環剪試驗結果與草嶺地滑行為 145 第5章 結論與建議 153 5-1 結論 153 5-2 建議 156 參考文獻 157 自述 162

    1. 李錫堤、洪如江、林銘郎、蔡龍珆,“草嶺崩塌地工程地質調查與穩定性評估”,中興工程顧問社,專題研究報告,1993。
    2. 李錫堤、林銘郎、吳禮浩、鄭俊昇,“草嶺大崩山區的地質調查及歷次大崩山滑動面的決定”,1994 岩盤工程研討會論文集,第459-467 頁,1994。
    3. 李程遠,“多功能剪力試驗系統之研發-扭剪部分”,國立交通大學土木工程研究所碩士論文,新竹,台灣,2003。
    4. 李正楠,“草嶺崩坍地受震行為初探”,國立台灣大學土木工程學研究所碩士論文,台北,台灣,2001。
    5. 李建堂,“草嶺休閒步道地景解說手冊” 台北 行政院農委會,2004。
    6. 吳俊賢,“利用環形剪力試驗儀探討南部軟岩殘餘強度特性”,國立成功大學土木工程研究所碩士論文,台南,台灣,2005。
    7. 何信昌、黃建政、黃鑑水,草嶺山崩。九二一地震地質調查報告。第97-102頁,1999。
    8. 何春蓀,“台灣地質概論-台灣地質圖說明書”,經濟部中央地質調查所,台北,台灣,163頁,1986。
    9. 何春蓀,“台灣地質概論-台灣地質圖說明書”,經濟部中央地質調查所,第二版,台北,台灣,163頁,1994。
    10. 何春蓀,“台灣地質概論-台灣地質圖說明書”,經濟部中央地質調查所,第二版,台北,台灣,163頁,2003。
    11. 林宏明,“軟岩在不同環境及應力條件下之力學行為”,國立成功大學土木工程研究所博士論文,台南,台灣,2000。
    12. 周瑞燉,“台灣地層誌:台灣地質”,台灣省文獻委員會發行,1-114,1974。
    13. 胡邵敏,“砂岩與頁岩之邊坡穩定問題”,邊坡穩定與坍方研討會,台北,第117-144 頁,1979。
    14. 洪如江,“草嶺大崩山之探討”,工程環境會刊,第一期,第29─39頁,1980。
    15. 洪如江,“草嶺崩塌地之初步調查”,岩石力學試驗與穩定分析,行政院農業委員會,69農建-5.1-源-46(甲) ,1981。

    16. 洪如江,“草嶺崩塌地工程地質之調查”,岩石力學試驗報告,行政院農業委員會,71農建-1.3-源-12(3) ,1982。
    17. 洪如江,“草嶺大崩山之歷史性照片”,地工技術,第76期,第113-124頁,1999。
    18. 洪如江、李錫堤、林美聆、林銘郎、鄭富書、陳正興,“天塹可以飛渡、崩山足以斷流(草嶺順向坡滑動) ”,地工技術,第77期,第5-18頁,2000a。
    19. 洪如江、林美聆、林銘郎、鄭富書,“九二一集集大地震後續短期研究-草嶺大崩山之後續研究”,報告編號:NCREE-00-057,國家地震工程研究中心,台北,台灣,2000b。
    20. 徐鐵良,“地質與工程”,中國工程師學會,pp.43~50,1993。
    21. 陳時祖、余騰鐸、陳昭旭,”集集地震造成之岩石順向坡破壞”,1999集集大地震災害調查研討會,台南,台灣,第D47-D65頁,1999。
    22. 陳柏穎,“不排水環形剪力試驗探討關廟層砂岩之剪力行為”,國立成功大學土木工程研究所碩士論文,台南,台灣,2006。
    23. 陳春華,“非連續體變形分析法模擬集集地震引致草嶺邊坡崩塌模擬之研究”,國立成功大學土木工程研究所碩士論文,台南,台灣,2008。
    24. 黃鍵水、何信昌、劉桓吉“台灣中部草嶺地區之地質與山崩”,經濟部中央地質調查所彙刊,第95-112頁,1983。
    25. 像片基本圖:“草嶺(2000)、9520-|||-077坔埔(2000)、9520-|||-19草嶺,行政院農業委員會林務局農林航空測量所,台北,台灣,1982。
    26. 謝豪榮、吳建興,“地滑地之調查與分析方法之研究(三) ”,行政院國家科學委員會,防災科技研究報告79-33號,1991。
    27. 廖正傑,“南部軟岩於環形剪力試驗及力學特性之研究”,國立成功大學土木工程研究所碩士論文,台南,台灣,2004。
    28. 賴佳澤,“利用環形剪力試驗探討具結理面之軟弱砂岩受振力學性質”,國立成功大學土木工程研究所碩士論文,台南,台灣,2009。
    29. 劉桓吉、李錦發、紀宗吉,“五萬分之ㄧ台灣地質圖-雲林”,經濟部中央地質調查所,圖幅第三十八號,第二版,台北,台灣,2004。
    30. 嚴國禎,“錦水頁岩殘餘強度與草嶺邊坡穩定關係之研究”,國立台灣大學土木工程學研究所碩士論文,台北,台灣,2000。


    31. Agung﹐M.W., Sassa K.﹐Fukuoka H. and Wang G.﹐“Evolution of Shear-Zone Structure in Undrained Ring-Shear Tests﹐” Landslides﹐Vol. 2﹐pp. 101-112, 2004.
    32. Bishop﹐A.W.﹐Green﹐G.E.﹐Garaga﹐V.K.﹐Andresen﹐A.﹐and Brown﹐ J.D.﹐“A New Ring Shear Apparatus and its Application to the Measurement of Residual Strength﹐” Geotechnique ﹐Vol. 21, NO. 4 ,pp. 273-328, 1971.
    33. Boore﹐D.M.,“Effect of Baseline Corrections on Response Spectra for
    Two Recordings of the 1999 Chi-Chi, Taiwan, Earthquake ﹐”U.S.
    Geological Survey Open-File Report, pp.99-545,USA﹐1999
    34. Boore﹐D.M., “Effect of Baseline Corrections on Displacements and Response Spectra for Several Recordings of the 1999 Chi-Chi, Taiwan, Earthquake,” Bulletin of the Seismological Society of America﹐Vol.91, NO.5, pp.1199-1211, 2001.
    35. Boore﹐D.M.﹐“Comparisons of Ground Motions from the 1999 Chi-Chi Earthquake with Empirical Predictions Largely Based on Data from California﹐” Bulletin of the Seismological Society of America, Vol.91, NO. 5, pp. 1212–1217, 2001.
    36. Chigira, M., Wang, W.-N., Furuya, T., Kamai, T., “Geological Causes and Geomorphological Precursors of the Tsaoling Landslide Triggered by the 1999 Chi-Chi Earthquake, Taiwan,” Engineering Geology, Vol. 68, pp. 259-273, 2003.
    37. Hoek, E. and Bray, J.W.,”Rock Slope Engineering,” Institute of Mining and Metallurgy, London, 1977.


    38. Hong, Y., Sun, T., Luan, M.T, Zheng, X.Y., Wang, F.W., ”Development and Application of Geotechnical Ring Shear Apparatus: An Overview,” Rock and Soil Mechanics, Vol. 30, NO. 3, pp. 628-634, 2009.
    39. Kamai, T., “Monitoring the Process of Ground Failure in Repeated Landslides and Associated Stability Assessments,” Engineering Geology, Vol.50, pp. 71-84, 1998.
    40. Lemos, L., Skempton, A.W., and Vaughan, P.R., “Earthquake Loading of Shear Surfaces in Slopes,” In: 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, USA, pp. 1955-1958, 1985.
    41. Liao, C.J., Lee, D.H., Wu, J.H., Lai, C.Z., ” A New Ring-Shear Device For Testing Rocks Under High Normal Stress and Dynamic Conditions, ” Engineering Geology, In Press, 2011.
    42. Reynolds, O., ”On the Dilatancy of Media Composed of Rigid Particles in Contract,” Philosophical Magazine, Vol. 5, NO. 20, pp. 469-481, 1985.
    43. Skempton, A.W., “Long-term Stability of Clay Slopes,” Geotechnique, Vol. 14, NO. 2, pp. 77-101, 1964.
    44. Skempton, A.W. and Petley, D.J.,”The Strength Along Structural Discontinuities in Stiff Clays,” Proceedings of the Geotechnical Conference, Oslo, Vol II, pp 29–46, 1967.
    45. Skempton, A.W, “Residual Strength of Clays in Landslides, Folded Strata and the Laboratory,” Geotechnique, Vol.35, No.1, pp. 3-18, 1985.

    46. Stark, T.D., and Eid, H.T., “Drained Residual Strength of Cohesive Soils,”
    Journal of Geotechnic al Engineering, ASCE, Vol. 120, No.5, pp. 856-871, 1994.
    47. Wu, J.H., Tsai, P.H.,“New Dynamic Procedure For Back-Calculating the Shear Strength Parameters of Large Landslides, “Engineering Geology, In Press, 2011.
    48. Sadda, A.S., and Townsend, F.C., “State of the Art Laboratory Strength Testing of Soils,” Laboratory Shear Strength of Soil, ASTM STP740, R. N. Young and F. C. Townsend, Eds., Aerican Society for Testing and Materials, pp. 7-77, 1981.
    49. Wang, F., “An Experimental Study on Grain Crushing and Excess Pore Pressure Generation during Shearing of Study Soils: A Key Factor for Rapid Landslide Motion,” Doctoral Thesis of Kyoto Unversity, Kyoto, Japan, 1999.

    下載圖示 校內:2014-09-05公開
    校外:2014-09-05公開
    QR CODE