簡易檢索 / 詳目顯示

研究生: 李冠諭
Lee, Kuan-Yu
論文名稱: 電漿化學氣相沉積法成長氮化鎵奈米柱之密度控制
Controlling the Densities of Gallium Nitride Nanorods by Plasma Enhanced Chemical Vapor Deposition
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 84
中文關鍵詞: 電漿輔助化學氣相沉積法奈米柱氮化鎵發光二極體
外文關鍵詞: plasma-enhanced chemical vapor deposition, nanorods, gallium nitride, light-emitting diodes
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於氮化鎵具有極佳之光電特性,已廣泛應用於各種光電元件之製作。本實驗室結合氮化鎵與奈米柱結構的優勢,以自行開發之爐管型電漿輔助化學氣相沉積設備(plasma enhanced chemical vapor deposition),成長氮化鎵奈米柱。為了避免奈米柱在成長時發生融合成長(merge)的現象,造成晶格缺陷。本論文著重探討如何以PECVD控制氮化鎵奈米柱之成核密度。可概分為兩大部分,分別為控制反應物濃度,包含金屬鎵原子及氮離子;控制基板溫度以成長低密度氮化鎵奈米柱。另一部分為加入氫電漿,改變氮化鎵奈米柱之成長機制,成長低密度氮化鎵奈米柱。

    GaN is an excellent semiconductor material for the application due to its nature property. We combine the advantages of GaN and nano rod structure and present a self-developed PEVCD system for the GaN nano rod growth. To avoid merging of nano rods which leads to lattice defects during growth, this work focuses on controlling the nucleation density of GaN nano rods in PECVD system. The first part investigates the parameters for the growth of low density GaN nano rods: By controlling the concentration of reactant, namely gallium atoms and nitrogen ions; and by controlling the temperature of substrates. The second part focuses on growing low density GaN nanorods via hydrogen plasma to change GaN growth mechanism.

    目錄 摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 viii 圖目錄 ix 第一章 緒論 - 1 - 1-1 前言 - 1 - 1-2 發展歷史--發光二極體 - 2 - 1-3 奈米材料與應用 - 3 - 1-4 研究動機 - 4 - 1-5 論文架構 - 5 - 第二章 理論基礎與文獻回顧 - 6 - 2-1 氮化鎵之結構與特性 - 6 - 2-1-1 氮化鎵之結晶構造 - 7 - 2-1-2 氮化鎵之基本性質 - 8 - 2-1-3 成長氮化鎵之基板 - 10 - 2-2 一維氮化鎵奈米結構之成長 - 12 - 2-2-1 自組裝成長氮化鎵奈米柱 - 13 - 2-2-2 本團隊控制奈米柱成核密度之多種製程優缺點探討 - 16 - 第三章 實驗步驟與方法 - 26 - 3-1 實驗流程 - 26 - 3-2 實驗設備 - 27 - 3-2-1 爐管型電漿輔助化學氣相沉積系統 - 27 - 3-2-2 石英管反應腔體 - 28 - 3-2-3 三區段加熱管狀式高溫爐 - 31 - 3-2-4 電漿電源供應器 - 31 - 3-2-5 抽氣及真空系統 - 31 - 3-2-6 壓力監控系統 - 32 - 3-2-7 流量控制系統 - 32 - 3-3 實驗材料 - 32 - 3-3-1 實驗氣體 - 32 - 3-3-2 基板材料 - 33 - 3-3-3 真空管件材料 - 34 - 3-3-4 化學藥品 - 34 - 3-4 實驗步驟 - 34 - 3-4-1 以氣–固機制進行氮化鎵奈米柱之成長 - 34 - 3-4-2 加入氫氣,以氣–固機制進行氮化鎵奈米柱之成長 - 36 - 3-5實驗分析 - 37 - 3-5-1掃描式電子顯微鏡 - 37 - 3-5-2能量散佈分析儀 - 39 - 3-5-3 X光繞射分析儀 - 40 - 3-5-4 光致螢光光譜儀 - 41 - 第四章 結果與討論 - 42 - 4-1 控制反應物濃度及基板溫度以成長低密度奈米柱 - 42 - 4-1-1 控制金屬鎵濃度以成長低密度奈米柱 - 43 - 4-1-2 控制氮離子濃度以成長低密度奈米柱 - 49 - 4-1-3 控制基板溫度以成長低密度奈米柱 - 55 - 4-1-4 章節結語 - 58 - 4-2 以氫電漿控制氮化鎵奈米柱之成長形貌 - 59 - 4-2-1 氫電漿對氮化鎵奈米柱之成長機制影響 - 60 - 4-2-2 以氫電漿的蝕刻機制控制氮化鎵奈米柱之成核密度 - 65 - 4-2-3 以氫電漿的側向成長機制控制氮化鎵之成長形貌 - 70 - 4-2-4 章結結語 - 74 - 第五章 結論與未來展望 - 76 - 5-1 結論 - 76 - 5-2 未來展望 - 79 - 參考文獻 - 81 -

    [1]http://www1.eere.energy.gov/buildings/ssl/sslbasics_whyssl.html
    [2]http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl2012_energysavings_factsheet.pdf
    [3]H. J. Round, “A Note on Carborundum,” Electrical World, vol. 49, pp. 309, 1907.
    [4]E. F. Schubert, Light Emitting Diodes, Cambridge University Press, 2006.
    [5]W. Lu, P. Xie and C. M. Lieber, “Nanowire transistor performance limits and applications,” IEEE Transactions on Electron Devices, vol. 55, pp. 2859, 2008.
    [6] F. Qian, S. Gradečak, Y. Li, C. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Letters, vol. 5, pp. 2287, 2005.
    [7]M. A. Zimmler, F. Capasso, S. Müller and C. Ronning, ”Optically pumped nanowire lasers: invited review," Semiconductor Science and Technology, vol. 25, pp. 024001, 2010.
    [8]B. Tian, T. J. Kempa and C. M. Lieber, “Single nanowire photovoltaics,” Chemical Society Reviews, vol. 38, pp. 16, 2009.
    [9]E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire solar cells,” Annual Review of Materials Research, vol. 41, pp. 269, 2011.
    [10]V. Dobrokhotov, D. N. McIlroy, M. G. Norton, A. Abuzir, W. J. Yeh, I. Stevenson, R. Pouy, J. Bochenek, M. Cartwright, L. Wang, J. Dawson, M. Beaux and C. Berven, “Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles,” Journal of Applied Physics, vol. 99, pp. 104302, 2006.
    [11]K. Wanekaya, W. Chen, N. V. Myung and A. Mulchandani, “Nanowire-based electrochemical biosensors,” Electroanalysis, vol. 18, pp. 533, 2006.
    [12]W. L. Wilson, P. F. Szajowski, and L. E. Brus, "Quantum confinement in size-selected, surface-oxidized silicon nanocrystals," Science, vol. 262, pp. 1242-1244, 1993.
    [13]N. Mingo, "Thermoelectric figure of merit of II-VI semiconductor nanowires," Applied Physics Letters, vol. 85, pp. 5986-5988, 2004.
    [14]S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story, Second ed. Berlin: Springer-Verlag, 2000.
    [15]S. Porowski, "Growth and properties of single crystalline GaN substrates and homoepitaxial layers," Materials science & engineering. B, Solid-state materials for advanced technology, vol. B44, pp. 407-413, 1997.
    [16]M. E. Levinshteĭn, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, and SiGe. New York: John Wiley and Sons, 2001.
    [17]D. I. Florescu, V. M. Asnin, F. H. Pollak, A. M. Jones, J. C. Ramer, M. J. Schurman, et al., "Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy," Applied Physics Letters, vol. 77, pp. 1464-1466, 2000.
    [18]J. H. Edgar, Properties, processing and applications of gallium nitride and related semiconductors. London: INSPEC, 1999.
    [19]S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. Toth, M. R. Phillips, et al., "Nanoindentation of epitaxial GaN films," Applied Physics Letters, vol. 77, pp. 3373-3375, 2000.
    [20]H. Morkoç, Nitride Semiconductors and Devices. Berlin: Springer-Verlag, 1999.
    [21]D. Zubia and S. D. Hersee, "Nanoheteroepitaxy: The application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials," Journal of Applied Physics, vol. 85, pp. 6492-6496, 1999.
    [22]A. Waag, X. Wang, S. Fundling, J. Ledig, M. Erenburg, R. Neumann, et al., "The nanorod approach: GaN NanoLEDs for solid state lighting," Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 8, pp. 2296-2301, 2011.
    [23]S. Li and A. Waag, "GaN based nanorods for solid state lighting," Journal of Applied Physics, vol. 111, p. 071101, 2012.
    [24]M. A. Sanchez-Garcia, E. Calleja, E. Monroy, F. J. Sanchez, F. Calle, E. Munoz, et al., "Effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(1 1 1)," Journal of Crystal Growth, vol. 183, pp. 23-30, 1998.
    [25]J. Ristic, E. Calleja, S. Fernandez-Garrido, L. Cerutti, A. Trampert, U. Jahn, et al., "On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy," Journal of Crystal Growth, vol. 310, pp. 4035-4045, 2008.
    [26]R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Luth, "Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111)," Applied Physics Letters, vol. 90, p. 123117, 2007.
    [27]K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, "Nucleation conditions for catalyst-free GaN nanowires," Journal of Crystal Growth, vol. 300, pp. 94-99, 2007.
    [28]K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, "Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy," Journal of Crystal Growth, vol. 310, pp. 3154-3158, 2008.
    [29]吳東憲, 以電漿輔助化學氣相沉積法成長氮化鎵奈米柱於光電元件之應用, 國立成功大學化學工程學系博士論文, p.63-p.77, 2012
    [30]吳東憲, 以電漿輔助化學氣相沉積法成長氮化鎵奈米柱於光電元件之應用, 國立成功大學化學工程學系博士論文, p.91-p.78, 2012

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE