簡易檢索 / 詳目顯示

研究生: 莊蕙萍
Hui-ping, Chuang
論文名稱: 三段式流體化床生物程序處理PAN廢水之程序功能評估與微生物族群動態變化之探討
Performance Evaluation and Microbial Diversity for a Three-Stage Biological Fluidized Bed Process Treating Polyacrylonitrile Wastewater
指導教授: 鄭幸雄
Cheng, Sheng-Shung
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 241
中文關鍵詞: 聚丙烯腈人造纖維製程廢水電子顯微鏡觀察有機氮硫酸鹽三段式流體化床程序選殖和定序微生物社會和多樣性
外文關鍵詞: T-RFLP, DGGE., cloning and sequencing, organic nitrogen, microbial community and diversity, SEM morphology, polyacrylonitrile wastewater, sulfate reducing bacteria, three-stage fluidized bed process
相關次數: 點閱:197下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究整合2000 ~ 2003年長期的實驗數據來評估三段式生物程序組合降解聚丙烯晴(Polyacrylonitrile,PAN)廢水之程序功能, PAN製程廢水的廢水特性為具有高濃度的有機氮(TKN/COD=0.15 ~ 0.26),且富含硫酸鹽(SO42- = 882 ~ 1762 mg/L)和缺乏足夠生物作用的磷源(TP/COD=3.3×10-5),因此PAN廢水為一難處理之工業廢水。為了加強PAN廢水中有機氮的生物可分解性,本研究以高溫厭氧脫氨/中溫無氧脫硝/中溫好氧硝化三段式流體化床組合程序來處理PAN人造纖維製程廢水。
    在三段式生物程序中,PAN廢水中難分解的有機氮和長鏈大分子碳化合物能夠被有效的降解在第一段高溫厭氧脫氨反應槽,而在第二段脫硝槽中微生物能利用有機碳當作電子接受者,最後進入硝化槽,硝化污泥能夠氧化殘餘的有機氮,且能將氨氮完全轉化為硝酸鹽。
    由一系列的生物活性試驗來評估厭氧微生物之潛能,實驗結果顯示額外添加氫氣和醣類在厭氧的批次試驗中能夠加強PAN廢水生物可分解性的機制。而當PAN廢水經由高溫厭氧生物程序處理後能夠降低對脫硝菌之抑制性。在第三段氨氮氧化過程中,中間產物亞硝酸鹽為主要的抑制因子。
    程序控制方面,在高溫厭氧槽中添加蔗糖能夠加強PAN廢水中有機氮有效地裂解,另一方面,硫酸鹽體積負荷的提升能夠加強PAN廢水中有機碳的裂解。自硝化槽迴流的硝酸鹽能夠促進脫硝槽中COD的降解,而在高溫厭氧/無氧脫硝兩段式生物程序操作下,即使在高體積負荷(2.25 kg COD/m3-day)下,亦能有效地降解PAN廢水。本研究於高溫厭氧反應槽中強化硫酸還原菌和於脫硝槽中強化硝酸鹽,能夠提升三段式生物程序的總去除效率。
    電子顯微鏡方面,於高溫厭氧反應槽中在高負荷下以絲狀菌為主要的優勢菌,在低負荷下則以桿菌為主。於脫硝槽中是以短桿菌和彎曲桿菌為優勢菌,而於硝化槽中則是以球菌為主要的優勢菌。
    在微生物社會和多樣性方面,於高溫厭氧反應槽中,以選殖定序後的TF57和TF48為降解PAN廢水的優勢菌,而TF57和TF48是屬於Thermotogales的硫酸還原菌。在脫硝生物程序中,根據選殖和定序的結果,有79 %和5 %分別為脫硝菌和厭氧菌,其中以Acidovorax為主要的優勢菌群;根據T-RFLP的結果發現原本存在懸浮相中的兩個優勢菌群c和h逐漸轉移至活性碳上的生物膜,而i在整個試程操作下一直為懸浮相的優勢菌群。最後,根據DGGE的結果顯示於脫硝槽中可觀察到厭氧菌,且於硝化槽中亦能觀察到厭氧菌和脫硝菌。因此,在三段式流體化床的環境中可觀察到微生物的動態變化和微生物族群的鑑定。

    This research integrated the long-term experimental data from 2000 to 2003 to evaluate the process performance of three-stage fluidized-bed bioreactors treating PAN wastewater with high-strength nitrogenous compounds. Characterization of the PAN manufacturing wastewater showed high concentration of organic nitrogen with high TKN/COD ratios up to 0.15-0.26 that indicated the refractory biodegradability for the PAN wastewater. In order to enhance biodegradation of organic nitrogenous compounds in PAN wastewater, a series of three-stage process with thermophilic anaerobic / anoxic denitrification / aerobic nitrification fluidized beds was employed.
    In the three-stage process, organic nitrogenous compounds were effectively degraded in first stage of thermophilic anaerobic fluidized bed, then the cleaved organic carbon was utilized as the electron donor in the denitrifying fluidized bed. In the third stage, nitrifying sludge could oxide the residual organic nitrogen and ammonia to be nitrate completely in the aerobic fluidized bed.
    A series of bioactivity studies was conducted to investigate the anaerobic microbial potential, the experimental result showed that addition of hydrogen and sugar in anaerobic batch tests enhanced biodegradation mechanism of PAN wastewater. The inhibition of denitrifying bacteria decreased when PAN wastewater was pretreated with the anaerobic process. Finally, the intermediate product of nitrite was the major inhibitor in the third stage of ammonium oxidation.
    For process control, sucrose adding could enhance the Org-N degradation of PAN wastewater effectively, on the other hand, volumetric load raising of sulfate influent could also enhance the Org-C degradation of PAN wastewater in the thermophilic anaerobic reactor. The recirculated nitrate concentration could promote COD degradation in the denitrifying bioreactor. These two-stage processes were able to effectively treat PAN wastewater even at high volumetric loading rate (2.25 kg COD/m3/day). In this study, the enriched sulfate reducing bacteria in the anaerobic reactor and the enriched nitrate reducing bacteria in the denitrifying reactor could promote the overall removal efficiency with the three stage process.
    From SEM observation, filamentous microorganisms were observed dominant in the anaerobic reactor at high volumetric loading, while rod bacteria were dominant at low volumetric loading. Short rod bacteria and spirillum were dominant in the denitrifying reactor. While cocci were the dominant bacteria in the nitrifying reactor.
    For Microbial community and diversity, cloning strains of TF57 and TF48 were sorted to Thermotogales, sulfate reducing bacteria, that were dominant in the anaerobic reactor. Based on the cloning and sequencing result for the denitrification reactor, 79 % and 5 % of the bacterial domanin were denitrifiers and anaerobic bacteria, respectively. Wherein, Acidovorax was the dom inant denitrifier in the denitrification reactor. Based on T-RFLP result, two dominant species existed in the suspended sludge, c and h, were migrated to the biofilm attached on GAC, but species i was dominant in the suspended sludge. Finally, DGGE results showed that biodiverisy of anaerobic bacteria were observed in the denitrification reactor, and both anaerobic bacteria and denitrifiers were also observed as the suspended microbes in the nitrification reactor. The microbial population dynamics were observed and identified in the three stages of fluidized-bed ecosystem.

    中文摘要 I 英文摘要 III 目錄 V 表目錄 VIII 圖目錄 X 第一章 前言 1 第二章 文獻回顧 4 2-1 PAN人造纖維製造流程 4 2-2 有機腈化物之生物分解 8 2-3 氮的循環 14 2-4 硝化作用 20 2-4-1 自營性硝化作用 20 2-4-2異營性硝化作用 25 2-4-3影響硝化作用的參數 26 2-5 脫硝作用 31 2-5-1 呼吸性脫硝 32 2-5-2 化學性脫硝 33 2-5-3好氧脫硝 33 2-5-4 影響脫硝的因素 35 2-6 含氮污染物去除程序 40 2-6-1傳統生物厭氧硝化脫硝三段式組合程序 40 2-6-2 近十年新發展的生物脫硝硝化程序 45 2-7 厭氧作用 48 2-7-1厭氧微生物之分解作用 48 2-7-2硫酸鹽還原作用 50 2-7-3硫化氫(H2S)的抑制作用 52 2-7-4硫酸鹽還原菌群的多樣性 53 2-7-5甲烷菌群的多樣性 54 2-7-6硫酸鹽還原菌與甲烷菌群之交互關係 56 2-8 分子生物在生物程序中的應用 59 2-8-1 微生物族群的指紋譜分析 59 2-8-2 16S rDNA基因資料庫(16S rDNA cloning library) 60 2-8-3 分子生物技術在生物處理程序上的應用 62 第三章 實驗設備與方法 66 3-1 水質分析項目 66 3-1-1 一般水質分析項目 66 3-1-2 儀器分析 66 3-2 生物活性與反應特性檢驗法 69 3-2-1 生化氫氣潛能試驗 69 3-2-2 生化甲烷潛能試驗 70 3-2-3 批分式血清瓶生化氮氣產能試驗 72 3-2-4 氣泡式呼吸儀進行生化氮氣產能試驗 75 3-2-5 批分式BOD瓶比攝氧速率實驗 78 3-2-6 電解呼吸儀進行比攝氧速率實驗 79 3-3 固定生物膜生物質量之測定 82 3-4 電子顯微鏡之生物菌相觀察 86 3-5 分子生物技術 87 3-5-1 DNA萃取 87 3-5-2 聚合酵素連鎖反應 88 3-5-3 瓊脂膠體電泳 89 3-5-4 16S r DNA分子選殖實驗 91 3-5-5 T-RFLP 93 3-6 三段式生物厭氧/脫硝/硝化流體化床 95 3-6-1 高溫厭氧導流管式流體化床 95 3-6-2 脫硝流體化床 96 3-6-3 硝化導流管式流體化床 97 3-6-4 三段式生物厭氧脫氨/無氧脫硝/好氧硝化組合程序 98 第四章 結果與討論 99 4-1 聚丙烯腈人造纖維製程廢水水質特性分析 99 4-2 高溫厭氧生物程序之醱酵程序與動力探討 101 4-2-1 高溫厭氧生物程序中醱酵機制與動力參數之探討 102 4-2-2 高溫厭氧菌分解PAN廢水反應中氫氣對有機氮裂解之影響 111 4-2-3 四種不同醣類對高溫厭氧生物程序處理PAN廢水之分解性試驗 121 4-2-4 小結 125 4-3 無氧脫硝生物程序之脫硝程序與動力探討 126 4-3-1 無氧脫硝生物程序中脫硝機制與動力參數之探討 127 4-3-2 脫硝菌降解醋酸之生物可分解性試驗 137 4-3-3 脫硝菌降解PAN廢水之生物可分解性試驗 140 4-3-4 脫硝菌降解高溫厭氧出流水之生物可分解性試驗 143 4-3-5 小結 147 4-4 好氧硝化生物程序之硝化程序與動力探討 148 4-4-1 好氧硝化生物程序中脫硝機制與動力參數之探討 149 4-4-2 好氧硝化生物程序處理氨氮之生物可分解性研究 156 4-4-3 好氧硝化生物程序處理丙烯晴廢水生物分解性研究 163 4-4-4 小結 168 4-5 高溫厭氧、無溫脫硝和好氧硝化流體化床個別啟動之試程探討 169 4-5-1 高溫厭氧流體化床 171 4-5-2 無氧脫硝流體化床 174 4-5-2-1 無氧脫硝流體化床之流力探討 174 4-5-2-2 無氧脫硝流體化床之試程操作 176 4-5-3 好氧硝化流體化床 184 4-5-4 小結 187 4-6 兩段式高溫厭氧和無氧脫硝流體化床連續流處理之功能探討 188 4-7 三段式高溫厭氧/無氧脫硝/好氧硝化流體化床連續流處理功能探討 195 4-8掃描式電子顯微鏡菌相觀察 202 4-9三段式生物程序之微生物多樣性研究 206 4-9-1高溫厭氧流體化床之微生物社會 207 4-9-2無氧脫硝流體化床中微生物族群之16S rDNA資料庫建立 210 4-9-3利用DGGE分析脫硝槽在不同試程下之微生物動態變化 216 4-9-4利用T-RFLP分析脫硝槽在不同試程下之微生物動態變化 221 4-9-5好氧硝化流體化床之微生物動態變化 226 4-9-6三段式生物程序之微生物動態變化 230 4-9-7小結 230 第五章 結論與建議 231 5-1結論 231 5-2建議 233 參考文獻 234

    1. Abeling U. and Seyfried C. F. (1992) Anaerobic-aerobic treatment of high-strengh ammonium wastewater-nitrogen removal via nitrite. Wat. Sci. Technol. 26, 1007-1015.
    2. Aeckersberg F., F. A. Rainey and F. Widde l(1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch. Microbiol. 170:361-369.
    3. Alleman J. E. (1984) Elevated nitrite occurrence in biological wastewater treatment systems. Wat. Res. 27, 1303-1312.
    4. Allison S. M. and J. I. Prosser (1993) Ammonia oxidation oxidation at low pH by attached population of nitrifying bacteria. Soil. Biol. Biochem. 25, 935-941.
    5. Anthonisen A. C., R. C. Loehr, T. B. S. Prakasam and E. G. Srinath (1976) Inhibition of nitrification by ammonia and nitrous acid. J. Wat. Pollut. Control Fed. 48, 835-852.
    6. Asano Y., K., Fujishiro, Y. Tani and H. Yamada (1982) Aliphatic nitrile hydratase from Arthobacter sp. J-1 purification and characterization. Agric. Biol.Chem. 46:1165-1174.
    7. Babu G. R. V., J. H. Wolfram, J. M. Marian, K. D. Chapatwala (1995) Pseudomonas marginalis:its degradative capability on organic nitriles and amides. Applied Microbiology. 43(4):739-745.
    8. Banerjee A., R. Sharma and U. C. Banerjee (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol. Biotechnol. Rev. 60:33-44.
    9. Belser L. W. (1979) Population ecology of nitrifying bacteria. Annu. Rev. Microbial. 33, 309-333.
    10.Bock E. and H. P. Koops (1992) The genus Nitrobacter and related genera. In the Procaryotes. 2nd. End, (Balows A., H. G. Trüper, M. Dworkin, W. Harder and K. H. Schleifer eds), 2302-2309, Springer – Verlag, Berlin.
    11.Bock E., I. Schmidt, R. Stuven and D. Zart (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron accetors. Arch Microbiol. 163, 16-20.
    12.Bryant M. P., L. L. Campbell, C. A. Reddy and M. R. Crabill (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33:1162-1169.
    13.de Boer W., H. Duyts and Laanbroek H. J. (1989) Urea stimulated autotrophic nitrification in suspension of fertilized, acid health soil. Soil Biol. Biochem. 21, 349-354.
    14.de Boer W., A., Tietema, P. J. A. Klein Gunnewiek and H. J. Laanbroek (1992) The qutotrophic ammonium-oxidizing community in a nitrogen-saturated acid forest soil in relation to pH-dependent nitrifying activity. Soil Biol. Biochem. 24, 229-234.
    15.Ehich S., D. D. Behrens, R. J. Seviour, R. Amann, and L. L. Blackall (1997) Development and use of fluorescent in situ hybridization probes for the detection and identification of “Microthrix parvicella” in activated sludge. Syst. Appl. Microbiol. 20, 310-318.
    16.Fdz-Polanco F., P. A. Garcia and S. Villaverde (1994) Temperature effect over nitrifying bacteria activity in biofilters: activation and free ammomia inhibition. Wat. Sci. Tech. 30, 121-130.
    17.Frushour B. G. (1995) Acrylic polymer characterization in solid state and solution. In J. C. Masson (ed.), Acrylic fiber technology and application. Mercel Dekker Inc. New York, N.Y. p. 207.
    18.Ghyoot W., Vandaele S. and Verstraete W. (1999) Nitrogen removal from sludge reject water with a membrance-assisted bioreactor. Wat. Res. 33, 23-32.
    19.Goreau T. J., W. A. Kaplan, S. C. Wofsy, M. B. McElroy M. B., F. W. Valois and S. W. Watson (1980) Production of NO and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microbiol. 40, 526-532.
    20.Graham D., R. Pereira, D. Barfield and D. Cowan (2000) Nitrile biotransformations using free and immobilized cells of a thermophilic Bacillus spp. Enzyme and Microbial Technology, 26(5-6):368-373.
    21.Gujer W. and J. B. Zehnder (1983) Conversion processes in anaerobic digestion. Water Sci. Technol. 15:127-167.
    22.Guerrero M. G., J. M. Vega and M. Losada (1980) The assimilatory nitrate-reducing system and its regulation. Annu. Rev. Plant. Pysiol. 32, 169-204.
    23.Hook R. H., W. G. Robinson (1964) Purification and properties. Ricinine nitrilase. Ⅱ.The Journal of Biological Chermistry. 239 (12):4263-4267.
    24.Harper D.B. (1977) Microbial metabolism of aromatic nitriles – enzymology of C-N cleavage by Nocardia sp. Biochem. J. 165:309-319.
    25.Head I. M., W. D. Hiorns, T. M. Embley, A. J. McCarthy and J. R. Saunders (1993) The phylogeny of the autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequence. J. Gen. Microbiol. 139, 1147-1153.
    26.Hyman M. R., I. B. Muton and D. J. Arp (1988) Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes and alkynes. Appl. Environ. Microbiol. 54, 3187-3190.
    27.Jones R. D. and R. Y. Morita R. Y. (1983) Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea. Appl. Environ. Microbiol. 45, 401-410.
    28.Klemedtsson L., Q. Jiang, A. K. Klemedtson and L. Bakken (1999) Autotrophic ammonium-oxidizing bacteria in a Swedish mor humus. Soil. Biol. Biochem. 31 839-847.
    29.Kobayashi M., N. Yanaka, T. Nagasawa, H. Yamada (1990) Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles. Journal of Bacteriology. 172(9):4807-4815.
    30.Koops H. P., B. Böttcher, U. C. Möller, A. Pommerening-Röser and G. Stehr (1990) Description of a new species of Nitrosococcus. Arch. Microbial. 154, 244-248.
    31.Lang E. and Jagnow G. (1986) Fungi of a forest soil nitrifying at low pH values. FEMS Microbial. Ecol. 38, 257-265.
    32.Lee Y. W., S. K. Ong and C. Sato (1997) Effects of heavy metals on nitrifying bacteria. Wat. Sci. Tech. 36, 69-74.
    33.Lee Y. W., J. J. Ribinson and C. M. Cavanaugh (1999) Pathway of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses:expression of host ans symbiont glutamine synthetase. Journal of Experimental Biology. 202, 289-300.
    34.Linton E. A., C. J. Knowles (1986) Utilization of aliphatic amides and nitriles by Nocardia rhodochrous LL100-21. The Journal of General Microbology. 132:1493-1501.
    35.Liu J. K., Liu, C. H. and Lin, C. S. (1997) The role of nitrogenase in a cyanide-degrading Klebsiella oxytoca strain. Proc. Natl. Sci. Counc. Repub. China 2:37-42.
    36.Lozinov A. B. and V. A. Ermachenko (1959) NH4+ oxidation by nitrite bacteria as function of certain factors of the medium. The effect of (NH4)2SO4 concentration. Microbiology. 28, 674-679.
    37.Mark H. F., S. M. Atlas and E. Cernia (1967) Man-Made Fibers. Volume 1. Interscience Pub. New York.
    38.Maidak B. L., Cole, J. R., Lilburn, T. G., Parker, C. T. Jr., Saxman, P. R., Stredwick, J. M., Garrity, G. M., Li, B., Olsen, G. J., Pramanik, S., Schmidt, T. M. and Tiedje, J. M. (2000) The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28:173-174.
    39.McBride K. E., J. W. Kenny, D. M. Stalker (1986) Metabolism of the herbicide bromoxynil by Klebsiella pneumoniae subsp. Ozaenae. Applied and Environmental Microbiology. 52(2):325-330.
    40.McCarty G. W. and J. M. Bremner (1992) Regulation of assimilatory nitrate reductase activity in soil by microbial assimilation of ammonia. Proc. Natl. Acad. Sci. 89, 453-456.
    41.Nawaz M. S., K. D. Chapatwala, J. H. Wolfram (1989) Degradation of acetonitrile by Pseudomonas putida. Applied and Environmental Microbiology. 55(9):2267-2274.
    42.Nawaz M. S., J. W. Davis, J. H. Wolfram, K. D. Chapatwala (1991a) Degradation of organic cyanides by Pseudomonas aeruginosa. Applied Biochemistry and Biotechnology. 28/29:865-875.
    43.Nawaz M. S., W. Franklin, W. L. Campbell, T. M. Heinze, C. E. Cerniglia (1991b) Metabolism of acrylonitrile by Klebsiella pneumoniae. Archives of Microbiology. 156:231-238.
    44.Odom J. M. and Singleton, R. Jr. (1993) The sulfate-reducing bacteria: contemporary perspectives. Springer-Verlag New York Inc. p. 28.
    45.Painter H. A. and J. E. Loveless (1983) Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated-sludge process. Wat. Res. 17, 237-248.
    46.Pennington P. L. and R. C. Ellis (1993) Autotrophic and heterophic nitrification in acidic forest and native grassland soils. Soil Biol. Biochem. 25, 1399-1408.
    47.Pommerening-Röser A., G. Rath and H. P. Koops (1996) Phylodenetic diversity within the genus Nitrosomonas. Syst. Appl. Microbiol. 19, 344-351.
    48.Precigou S., Goulas, P. and Duran, R. (2001) Rapid and specific identification of nitrile hydratase (NHase)-encoding genes in soil samples by polymerase chain reaction. FEMS Microbiol. Lett. 204: 155-161.
    49.Rabus R., Nordhaus, R., Ludwig, W. and Widdel, F. (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol. 59:1444-1451.
    50.Randall C. W. (1984) Nitrite built-up in activated sludge resulting from temperature effects J. WPCF. 56, 1039-1044.
    51.Rick W. Y. and M. T. Stuart (2001) Microbial nitrogen cycles:physiology, genomics and applications. Current Opinion Microbiology. 4, 307-312.
    52.Robertson L. A., T. Dalsgard, N. P. Revsbech and J. G. Kuenen (1988) Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl. Enviton. Microbiol. 54, 2812-2818.
    53.Schmidt I. and E. Bock (1997) Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch. Microbiol. 167, 106-111.
    54.Scholten J. C. M. and A. J. M. Stams (1995) The effect of sulfate and nitrate on methane formation in a freshwater sediment. Antonie van Leeu. 68, 309-315.
    55.Sharma, B. and R. C. Ahlert (1977) Nitrification and nitrogen removal. Wat. Res. 11, 897-925.
    56.Sorokin D. Y., G. Muyzer, T. Brinkhoff, G. Kuenen and M. S. M. Jetten (1998) Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species, N. alkalicus sp. nov. Arch. Microbial. 170, 345.
    57.Stams A. J. M., E. M. Flameling and E. C. L. Marnette (1990) The importantance of autotrophic versus heterotrophic oxidation of atmospheric ammonium in forest ecosystems with acid soil. FEMS Microbial. Ecol. 74, 337-344.
    58.Stanley R. and W. K. Sandler (1992) Polymer syntheses. Academic Press New York Vol. 1:382-408.
    59.Stewart V. (1994) Regulation of nitrate and nitrite reductase synthesis in Enterobacteria. Ant. Van Leeu. 66, 37-45.
    60.Struos M., J. A. Fuerst, E. H. Kramer, S. Logemann, G. Muyzer, K. T. van de Pas-Schoonen, R. Webb, J. G. Kuene and M. S. Jetten(1999) Missing lithotroph identified as new planctomycete. Nature. 400, 446-449.
    61.Suwa Y., Y. Imanura, T. Suzuki, T. Tashiro and Y. Urushigawa (1994) Ammonium-oxidizing bacteria with different sensitivies to (NH4)2SO4 in activated sludge. Wat. Res. 28, 1523-1532.
    62.Suzuki I., U. Dular and S. C. Kwok (1974) Ammonia and ammonium ion as substrate for oxidation by Nitrosomonas cells and extracts. J. Bacteriol. 176, 6623-6630.
    63.Terry K. R. and A. B. Hooper (1981) Hydroxylamine oxidoreductase:a 20-heme, 200,000 molecular weight cytochrome c with unusual denaturation properties which forms a 63,000 molecular weight monomer after heme removal. Biochemistry. 20, 7026-7032.
    64.Tiedje J. M. (1988) Ecology of denitrification and dissimlatory nitrate reduction to ammonium. In Biology of Anaerobic Microorganisms. Edited by Zehnder A. J. B., 179-244, Wiely. New York.
    65.Turk O. and D. S. Mavinic (1989) Maintaining nitrite build-up in a system acclimated to free ammonia. Wat. Res. 23, 1383-1388.
    66.Wang C. C. and Lee, C. M. (2001) Denitrification with acrylonitrile as a substrate using pure bacteria cultures isolated from acrylonitrile-butadiene-styrene wastewater. Environ. Int. 26:237-241.
    67.Watson S. W. and J. B. Waterbury (1971) Characteristic of two marine nitrite-oxidizing bacteria Nitrosopina gracilis nov. gen. Nov. sp. and Nitrococcus mobilis nov. gov. nov. sp. Arch. Microbiol. 77, 203-230.
    68.Watson S. W., E. Bock, H. Harms, H. P. Koops and A. B. Hooper (1989) Nitrifying bacteria. In Bergey’s manual of systematic bacteriology. (edn) Staley J. T., M. P. Bryant, N. Pfennig, and J. G. Holt, 3. 1808-1834. The Williams and Wilkins Co., Baltmore, Md.
    69.Widdel F. (1988) Microbiology, and ecology of sulfate- and sulfur-reducing bacteria. In: Biology of anaerobic microorganisms. Zehnder A. J. B. (ed.) New York: John Wiley and Sons.
    70.Wrage N., G. L. Velthof, M. L. van Beusichem and O. Oenema (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Bio Biochem. 33, 1723-1732.
    71.Wood P. M. (1986) Nitrification as a bacterial energy source. In Nitrification. 39-62. edited 71.by J. I. Prosser. Washington, DC:IRL press.
    72.Yamada H., Y. Asano, T. Hino, Y. Tani (1979) Microbial unilization of acrylonitrile. Journal of Fermentation Technology. 57(1):8-14.
    73.Yanase H., T. Sakai, K. Tonomura (1985) Microdial metabolism of nitriles in Pseudomonas sp. Journal of Fermentation Technology. 63(2):193-198.
    74.Zart D. and E. Bock (1998) High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous NO2 or NO. Arch. Microbiol. 169, 282-286.
    75.Zumft W. G. (1997) Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 633-616.

    76.陳賢焜,鄭幸雄,(1994),「生物膜化脫硝程序處理高濃度氨氮廢水之研究」,國立成功大學環境工程研究所博士論文。
    77.周素圓,鄭幸雄,(1997),「硝化脫硝程序中生物活性評估技術之研究」,國立成功大學環境工程研究所碩士論文。
    78.蔡宗岳,鄭幸雄,(1998),「兩段式生物脫硝及硝化組合程序去除ABS製程廢水中有機物與含氮化合物之研究」,國立成功大學環境工程研究所碩士論文。
    79.林泓胤,鄭幸雄,(1999)「三段式流體化床生物程序處理高氮工業廢水之程序研究」,國立成功大學環境工程研究所碩士論文。
    80.鍾志宏,鄭幸雄,(2000)「三段式生物程序組合處理ABS及PAN製程廢水之功能評估」,國立成功大學環境工程研究所碩士論文。
    81.彭欽鑫,鄭幸雄,(2001),「三段式流體化床三相生物程序處理人造纖維製程廢水之生物分解性研究」,國立成功大學環境工程研究所碩士論文。
    82.陳彥男,鄭幸雄,(2002),「三段式流體化床生物程序處理壓克力人造纖維製程廢水之程序研究」,國立成功大學環境工程研究所碩士論文。
    83.吳坤龍,鄭幸雄,(2003),「高溫厭氧菌分解PAN廢水之族群變化與功能評估」,國立成功大學環境工程研究所碩士論文。
    84.鄭幸雄,陳佩足,許佩瑜(1998),「氣泡呼吸儀批次試驗探討丙烯腈生物脫氨機制」,第二十三屆廢水處理技術研討會論文集,第248~255頁。
    85.張淑惠,李季眉,(1996),「氮系化合物分解微生物培養及篩選之研究」,國立中興大學環境工程所碩士論文。
    86.王俊欽,李季眉,(1997) ,「高氮廢水中丙烯腈分解菌及脫氮菌之研究」,國立中興大學環境工程所碩士論文。
    87.陳莉容,李季眉,(2001),「利用微生物將丙烯晴轉換成丙烯醯氨之研究」,中興大學環境工程系碩士論文。

    下載圖示 校內:2005-01-20公開
    校外:2005-01-20公開
    QR CODE