簡易檢索 / 詳目顯示

研究生: 陳政廷
Chen, Jheng-Ting
論文名稱: 車輛廢熱重組產氫摻燒改善引擎性能與排放之研究
Performance and Emission Improvement by Mixing with Hydrogen Rich Syngas by Methanol Reforming through Exhaust Gas of a Car
指導教授: 賴維祥
Lai, Wei-Hsiang
王振源
Wang, Chen-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 82
中文關鍵詞: 甲醇重組器富氫氣體廢熱回收汽油引擎
外文關鍵詞: Methanol Reformer, Hydrogen-Rich Syngas, Waste Heat Recovery, Spark-Ignited Gasoline Engine
相關次數: 點閱:89下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的為利用汽車引擎所排放出的廢氣,提供甲醇重組器進行重組反應產出富氫氣體,探討富氫氣體和汽油混合摻燒後,對於汽車性能和排放汙染之改善研究,氫氣為一乾淨能源,燃燒後產物主要為水,但目前產氫和儲氫方面仍有問題須克服,因此利用車載重組產氫解決上述問題。甲醇重組器屬於水蒸氣重組法,藉由廢熱回收的方式,將汽車排氣廢熱做為提供甲醇重組器重組反應的能量,提高整體效率。
    本研究主要分為兩部分,第一部分為測試甲醇重組器性能,第二部分則是車載重組器,並將產物富氫氣體導回摻燒測試實車整體性能,使用引擎動力計測試甲醇重組器性能的實驗結果顯示,在足夠的熱源下,甲醇重組器操作溫度達到280℃時,甲醇轉換效率介於90 %之間,而若當甲醇重組器操作溫度為260℃時,甲醇轉換率會隨著供應的甲醇水增加而有下降之趨勢,而在車載重組器部分,由實驗結果顯示,當添加富氫氣體後,當量比下降至0.8左右,在不同定車速下添加7%之氫氣百分比,整車之輸出功率改善4.64 %以上,制動燃油消耗率改善7.81%以上,在排污染方面,一氧化碳和二氧碳皆有下降之趨勢,而氮氧化物則會因為燃燒室內溫度升高而有上升之趨勢。

    The aim of the study is using exhaust gas discharged by gasoline engine to provide methanol reformer to produce hydrogen-rich syngas which is blended with gasoline to improve cars’ performance and polluted emission. Hydrogen, which forms water after combustion, is one of clean energy. However, the current difficulties of producing and storing hydrogen need to be overcome. Therefore, utilizing onboard methanol reforming to produce hydrogen can solve the problem mentioned above. Methanol steam reforming is an endothermic reaction. It raises efficiency by recycling exhaust gas waste heat as energy which provides to the requirement of methanol reformer.
    This study separates into two parts. One is to test performance of methanol reformer; the other is to test car’s performance by mixing hydrogen-rich syngas into cylinder from the onboad reformer. The consequence of utilizing engine dynamometer tests methanol reformer shows methanol conversion efficiency is about 90% as reformer temperature at 280℃. Then at 260℃, it shows reformer conversion efficiency is lower as methanol mass flow rate increases. For onboard reformer, when adding hydrogen-rich syngas, the equivalence ratio decreases to 0.8. Also in different constant speed adding 7% hydrogen, the power output efficiency improves more than 4.46%, the BSFC improves more than 7.81%. For polluted emission, CO and CO2 decrease, but NOx raises because of higher combustion chamber temperature.

    中文摘要 I 誌謝 VI 目錄 VII 表目錄 XI 圖目錄 XII 符號說明 XV 第1章 緒論 1 1-1前言 1 1-2文獻回顧 4 1-3研究動機 7 第2章 實驗基礎理論 9 2-1產氫原理 9 2-2重組產氫 10 2-3觸媒原理 13 2-4引擎排放廢氣 15 2-4-1一氧化碳(CO) 16 2-4-2碳氫化合物(HC) 17 2-4-3氮氧化物(NOx) 18 2-5相關計算 20 2-5-1引擎排氣莫爾流率計算 20 2-5-2經過重組器的排氣流率計算 20 2-5-3排氣廢熱流率計算 21 2-5-4改善率 22 第3章 實驗設備 23 3-1重組系統 23 3-1-1甲醇重組器 23 3-2燃料供給系統 24 3-2-1甲醇水 25 3-2-2甲醇定量泵浦 26 3-3排氣系統 27 3-3-1架上引擎排氣系統 27 3-4引擎系統 29 3-4-1架上引擎 29 3-4-2實驗車輛 31 3-5量測系統 32 3-5-1溫度量測系統 32 3-5-2重組產氫量測系統 34 3-5-2-1氣相層析儀(GC) 36 3-5-3 引擎排放廢氣量測系統 37 第4章 甲醇重組器性能分析 39 4-1引擎基礎數據 39 4-1-1引擎基礎量測 39 4-1-2引擎廢熱流率 41 4-1-3 排氣廢熱百分比 43 4-2甲醇重組器實驗性能分析 44 4-2-1甲醇重組富氫氣體成分分析 44 4-2-2甲醇轉換率 50 第5章 車載甲醇重組器應用結果 53 5-1實體車輛基礎量測 53 5-2車載重組器性能分析 55 5-2-1車載重組富氫氣體成分分析 55 5-3富氫氣體導入摻燒之影響 59 5-3-1富氫氣體對於實車性能之影響 59 5-3-2富氫氣體對於實車油耗之影響 63 5-3-3富氫氣體對於實車排放廢氣之影響 69 第6章 結論與未來工作 77 6-1結論 77 6-2未來工作 78 參考文獻 80

    【1】 Gabriele C. Hegerl, Francis W. Zwiers, Understanding and Attributing Climate Change, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    【2】 UNFCCC. Secretariat, Report of the Conference of the Parties on its twenty-first session, held in Paris from 30 November to 13 December 2015. Addendum. Part two: Action taken by the Conference of the Parties at its twenty-first session , Paris Climate Change Conference, United Nations Office at Geneva, 2016.
    【3】 R.A. Hefner, GHK Company, “The Age of Energy Gases,” The 10th Repsol–Harvard seminar on energy policy. Madrid, Spain, 3 June 1999.
    【4】 吳文騰, “台灣的能源概況,” 科學發展, 457期, pp.123-126, 2011。
    【5】 李建德, “從922國際無車日談替代性清潔燃料的發展現況,”車輛研測資訊, pp.9-16, 2006年9月。
    【6】 T.N. Veziroğlu, Şahin S. Energ, “21st Century’s energy: Hydrogen energy system,” Energy Conversion and Management, Vol.49, pp.1820-1831, 2008.
    【7】 Mustafa Balat, “Potential importance of Hydrogen as a Future Solution to Environmental and Transportation Problems,” International Journal of Hydrogen Energy, Vol.33, pp.4013-4029, 2008.
    【8】 N. Saravanan, G. Nagarajan, K.M. Kalaiselvan, C. Dhanasekaran, “An Experimental Investigation on Hydrogen as a Dual Fuel for Diesel Engine System with Exhaust Gas Recirculation Technique,” Renewable Energy, Vol.33, pp.422-427, 2008.
    【9】 Changwei Ji, Xiaoxu Dai, Bingjie Ju, Shuofeng Wang, Bo Zhang, Chen Liang, Xiaolong Liu, “Improving the Performance of a Spark-ignited Gasoline Engine with the Addition of Syngas Produced by Onboard Ethanol Steaming Reforming,” International Journal of Hydrogen Energy, Vol.37, pp.7860-7868, 2012.
    【10】 Tarkan Sandalcı, Yasin Karagoz, “Experimental Investigation of the Combustion Characteristics, Emissions and performance of Hydrogen Port Fuel Injection in a Diesel Engine,” International Journal of Hydrogen Energy, Vol.39, pp.18480-18489, 2014.
    【11】 駱庭煜,添加富氫氣體於四行程噴射機車引擎中之性能和排氣探討,國立中興大學機械工程所碩士論文,2008。
    【12】 姜禹丞,機車添加富氫重組氣對污染排放及油耗影響,國立中興大學機械工程所碩士論文,2014。
    【13】 葉順達,“以排氣廢熱來重組甲醇的富氫燃料引擎之性能改善與減量探討”, 國立中興大學機械工程所碩士論文,2011。
    【14】 Mahendra Pareta, Suman Roy Choudhury, B. Somaiah, J. Rangarajan, N. Matre, J. Palande, “Methanol Reformer Integrated Phosphoric Acid Fuel Cell (PAFC) Based Compact Plant for Field Deployment,” International Journal of Hydrogen Energy, Vol.36, pp.14771-14778, 2011.
    【15】 柯賢文, “未來的氫能經濟,”科學發展,399期,pp.68-75, 2006。
    【16】 J. S. Jadhao, D. G. Thombare, “Review on Exhaust Gas Heat Recovery for I.C. Engine,” International Journal of Engineering and Innovative Technology, Vol.02, Issue 12, 2013.
    【17】 曲新生,陳發林,呂錫民, 產氫與儲氫技術, 五南書局, 初版, 2007。
    【18】 胡興中, 觸媒原理與應用,新科技書局, 初版, 1991年1月
    【19】 Bruce A. Averill, Principles of General Chemistry, V.1.0, 2012.
    【20】 李冠宗,呂有豐, 內燃機, 高立圖書, 初版, 1999
    【21】 蘇金佳, 內燃機, McGraw Hill, 第二版, 1996
    【22】 林志翰,汽油引擎排氣廢熱回收對甲醇水蒸氣重組之研究,崑山科技大學機械工程所碩士論文,2015。
    【23】 LPR Profeti, JAC Dias, JM Assaf, EM Assaf, “Hydrogen Production by Steam Reforming of Ethanol over Ni-based Catalysts Promoted with Noble Metals,” Journal of Power Sources,Vol.190, pp.525-533, 2009.

    下載圖示 校內:2021-07-18公開
    校外:2021-07-18公開
    QR CODE