簡易檢索 / 詳目顯示

研究生: 樓季昀
Lou, Chi-Yun
論文名稱: 嘉南平原重溪岩芯沉積物中砷的垂直剖面與富集機制
Vertical profiles and concentrating mechanisms of arsenic in sediments of Tsung-Shi core at Chianan Plain
指導教授: 楊懷仁
Yang, Huai-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 113
中文關鍵詞: 沉積物黏土礦物鐵水合氧化物
外文關鍵詞: Arsenic, sediment, clay mineral, iron oxyhydroxide
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣嘉南平原地下水具高砷含量之特性是國際關注的地質現象,諸多分析資料顯示砷濃度平均值為0.35 ppm,遠高於世界衛生組織(World Health Organization)所規範的飲用水標準(0.01 ppm)35倍,飲用高砷地下水有可能引發烏腳病,且已被證實是罹患皮膚癌之肇因,此外也可以與心血管及呼吸疾病有關。地下水與地層沉積物有密切的地質相關性,沉積物的化學特徵可能對地下水中砷之來源提供制約。因此本研究分析嘉南平原柳營地區之170個重溪岩芯沉積物樣本之砷濃度、礦物組成、總碳與總有機碳含量,以及利用連續萃取法分析沉積物中主要砷載體,並利用這些資料對錦湖、新生岩芯進行比對,探討嘉南平原東西向剖面之砷含量空間分布以及砷的富集機制。
    本研究所分析的沉積物樣本中砷濃度平均為17.9 ppm,約為一般沉積物平均值兩倍,但可能是採樣偏差所造成之影響,主要組成礦物為石英、斜長石、綠泥石及伊來石,此外高砷樣本中多可見石膏之繞射峰。以「移動平均法」解析重溪岩芯砷濃度數據,建立10-35公尺、90-115公尺、及135-160公尺深之區間為砷富集區間。依吳琮壬(2007)的建立各岩芯之古沉積環境,指示10-35公尺、90-115公尺、及135-160公尺等砷富集區間為潟湖或沼澤等淺海相沉積環境,此類沉積條件之特點為相對封閉的環境與高有機物質含量。本研究將重溪、新生、錦湖三岩芯之砷富集帶與沉積環境相互比對,建立重溪-新生-錦湖之東西向砷富集帶變化垂直剖面。
    連續萃取的結果則顯示,重溪岩芯沉積物中主要的砷寄主為吸附相(黏土礦物與鐵水合氧化物)以及與隱晶質和結晶質鐵水合氧化物共沉澱之砷,其含砷量大多可達總砷之60-80%以上。而有機碳並非做為砷的主要載體,即使深度分布上砷與有機碳看似具有相同之變化趨勢,但有機碳與砷之相關係數僅0.2248,強烈指示嘉南平原沉積物中的有機物並非砷的主要寄主。同時樣本中的石膏亦顯示樣本曾經歷過氧化環境,使沉積物中硫化鐵礦物氧化,硫形成硫酸跟與水中鈣離子結合形成石膏,鐵則於水中沉澱形成鐵水合氧化物。
    鐵水合氧化物與砷之結合能力透過連續萃取與針鐵礦共沉澱實驗的結果可以得知,極少量的鐵水合氧化物即可與大量的砷進行共沉澱,以重溪岩芯沉積物為例,分析之170個樣本中最高砷者含砷244.6 ppm,僅需0.034 g之鐵水合氧化物即可與此砷含量進行共沉澱。此一結果亦能解釋礦物相分析中無法鑑定出鐵水合氧化物情形,顯示樣本中鐵水合氧化物結晶度不佳且含量低,無法透過XRD分析鑑定出來。
    而砷在沉積物以及地下水中之遷移主要受控於環境的pH值以及氧化還原電位。在能夠吸附砷的礦物相中,鐵水合氧化物之吸附能力為黏土礦物之數十倍至數百倍,應為高砷沉積物之主要吸附砷來源,且鐵水合氧化物之最大砷吸附量僅在有限之pH值範圍內。若沉積物含有高吸附砷,如嘉南平原,pH值應為砷於沉積物與地下水間遷移之主控因子。
    除pH值外沉積物中砷亦會因為環境之氧化還原電位改變而傾向進入沉積物或地下水中,一般狀況氧化環境之下易形成鐵水合氧化物,水中砷能與鐵水合氧化物共沉澱或被吸附而存在於沉積物之中,還原環境之下鐵水合氧化物分解,將砷釋放至地下水中。即砷進入沉積物或水中取決於流經沉積物之地下水的Eh-pH值。

    A total of 170 samples collected from the Tsung-Shi sediment cores at the eastern part of the Chianan Plain in SW Taiwan were analyzed for bulk arsenic concentration, major element compositions, total carbon, and total organic carbon (TOC) contents. Twenty-four of them were also analyzed with arsenic sequential procedure (SEP) and X-ray diffraction. The results showed three arsenic enriched zones at the depth ranges of 10–35 m, 90–115 m, and 135–160 m. High arsenic concentrations of > 30 ppm all occur in thin clay-silt layers with thickness < 10 m, reflecting deposition in shallow marine environments. The variations between arsenic content and major element compositions as well as the SEP results all indicated that samples with arsenic content < 20 ppm generally contains higher proportions of adsorbed arsenic than those containing > 20 ppm arsenic. The dominance of FeOOH on arsenic budgets was more obvious in the high arsenic samples. The arsenic proportions recovered by the HCl extraction that targeted at acid volatile sulfides and Mn oxides and those from HF extraction for decomposing silicates and oxides ranked the third and fourth in contributing to bulk arsenic. The absence of a correlation between arsenic and TOC contents and the low arsenic recovered from H2O2 extraction both indicated organic matter was not a major arsenic host. Based on our results, the causes for high arsenic content in Chianan Plain groundwater were addressed.

    摘要 I 英文摘要 III 致謝 VII 目錄 IX 圖目錄 XI 表目錄 XII 第一章 序論 1 1.1 前言 1 1.2 研究區域及地質背景 2 1.3 文獻回顧 5 1.3.1 砷的化學特性、來源及分布 5 1.3.2 砷的種類及毒性 8 1.3.3 砷在沉積物與地下水中的遷移 10 1.3.4 其他砷的相關研究 11 1.4 研究目的 12 第二章 研究材料與分析方法 13 2.1 研究材料 13 2.1.1 重溪岩芯概述 13 2.1.2 樣本採集 17 2.2 分析方法 18 2.2.1 重溪沉積物之總砷與主要元素含量分析 19 2.2.2 總碳與總有機碳分析 22 2.2.3 重溪沉積物之礦物相鑑定 23 2.2.4 砷的連續萃取法 24 第三章 分析結果 27 3.1 礦物相分析 27 3.2 重溪岩芯沉積物之砷濃度 31 3.2.1 重溪岩芯砷濃度與深度之關係 31 3.2.2 重溪岩芯主要元素間之關係 35 3.3 總碳與總有機碳分析 49 3.3.1 總碳含量 49 3.3.2 總有機碳含量 51 3.4 連續萃取分析 52 第四章 討論 57 4.1 重溪、新生、錦湖岩芯沉積物之差異 57 4.1.1 高密度採樣解析重溪岩芯沉積物之砷富集濃度 57 4.1.2 重溪、新生、錦湖岩芯垂直剖面之砷濃度變化 63 4.2 重溪岩芯沉積物砷主要載體分析 66 4.2.1 砷與主要元素之關係 66 4.2.2 砷在吸附相載體中的分布 68 4.2.3 隱晶質與結晶質鐵水合氧化物對沉積物中砷之貢獻 69 4.2.4 有機碳與砷之關係 71 4.3 嘉南平原沉積物與地下水之砷循環 74 4.3.1 pH值對沉積物中砷吸附量的影響 75 4.3.2 氧化還原電位對沉積物中砷的影響 76 第五章 結論 77 參考文獻 79 中文文獻 79 英文文獻 82 附錄一 重溪岩芯照片及其採樣層位與砷濃度。 89 附錄二 重溪岩芯沉積物之砷、鋁、鐵、錳、總碳及總有機碳之濃度與深度列表 105 附錄三 重溪岩芯沉積物之XRD繞射峰圖 106 圖目錄 圖1-1 嘉南平原地質圖及重溪-新生-錦湖岩芯地理位置圖。 3 圖1-2 砷物種在As-O2-H2O系統中pH-Eh的分布圖。 9 圖1-3 三價砷與五價砷在不同pH值溶液中之含量變化。 9 圖2-1 重溪岩芯地層柱。 15 圖2-2 重溪岩芯粒徑、14C年代與深度相關圖。 16 圖2-3 重溪岩芯沉積物分析方法流程圖。 18 圖3-1 重溪岩芯沉積物樣本TS-106、TS-140.1之X光繞射峰圖譜。 28 圖3-2 重溪岩芯沉積物砷含量之樣本數目分布圖。 32 圖3-3 重溪岩芯沉積物砷含量隨深度之變化圖。 34 圖3-4 重溪岩芯沉積物之主要元素氧化物濃度隨深度之變化。 37 圖3-5 重溪岩芯沉積物主要元素氧化物與氧化鋁之關係。 38 圖3-6 重溪岩芯沉積物主要元素氧化物與氧化鐵之關係。 39 圖3-7 重溪岩芯TC含量與TOC含量之樣本數目分布圖。 49 圖3-8 重溪岩芯沉積物TC與TOC含量隨岩芯深度變化圖。 50 圖3-9 重溪岩芯總碳與總有機碳濃度關係。 51 圖3-10 重溪岩芯連續萃取之砷重於各個相之分布。 54 圖3-11 各萃取步驟之砷量佔樣本總砷之百分比圖。 56 圖4-1砷濃度與樣本深度分布圖與移動平均法之比對。 60 圖4-2砷濃度與樣本深度分布圖與移動平均法之比對。 61 圖4-3 重溪岩芯地層柱、砷濃度、連續三樣本平均之比對。 62 圖4-4 錦湖-新生-重溪砷含量變化趨勢圖。 65 圖4-5 錦湖-新生-重溪末次冰期以來沉積環境及砷富集深度變化圖。 65 圖4-6 重溪岩芯沉積物中砷與主要元素氧化物之關係。 67 圖4-7 所有樣本之砷與有機碳之分布及其相關係數。 72 圖4-8 砷、有機碳與深度的分布關係。 73 圖4-9 鐵的Eh-pH相圖。 76 表目錄 表1-1 中油於嘉南平原所鑽之佳里二號井地層序。 4 表1-2 岩石、沉積物及土壤之砷含量。 7 表2-1 重溪岩芯基本資料。 13 表2-2 含砷固相物之連續萃取步驟。 26 表3-1 重溪岩芯沉積物之主要礦物相。 29 表3-2 重溪岩芯沉積物主要礦物相之最強繞射峰相對強度。 30 表3-3重溪岩芯沉積物之砷、主要元素氧化物與總碳、總有機碳濃度。 40 表3-4 重溪岩芯24個沉積物樣本連續萃取之砷重。 53 表3-5 各步驟萃取量在樣本中百分比。 55 表4-1 針鐵礦對砷之共沉澱實驗。 70

    中文文獻
    中央地調所網站 https://www.moeacgs.gov.tw/。
    中央地質調查所水文地質資料庫網站 http://hydrogis2.moeacgs.gov.tw/plain。
    王聖瑋 台灣西南沿海地區地層環境中砷之來源與釋出機制,國立臺灣大學生物環境系統研究所博士,2007。
    江育儒 台灣嘉南平原新生岩芯沉積物砷富集機制之地球化學證據。國立成功大學地球科學所碩士論文,2016。
    江彥㚬 針鐵礦之合成及對砷之共沉澱實驗,未發表。
    何春蓀 普通地質學。五南圖書出版,1984。
    何春蓀 台灣地質概論。經濟部中央地質調查所,1986。
    李志威 台灣西南港尾及新塭鑽井岩芯地球化學特性之探討。國立臺灣大學地質學研究所碩士論文,2000。
    呂鋒洲、楊重光與林國煌 嘉南烏腳病患區飲用地下水之理化特徵。台灣醫誌,74;596-605,1975。
    呂鋒洲、謝宏濱、吳新英、孫金財、郭宗禮、李俊仁與胡惠德 烏腳病流行區井水中螢光強度、砷濃度、pH 值和總溶解固體物彼此相關性及與烏腳病流行之探討。經濟部中央地質調查所水文地質研討會論文專集,頁: 151-164,1989。
    林朝棨 台灣地形。台灣省文獻委員會,共242 頁,1957。
    林朝棨 台灣西南部之貝塚與其地史學意義,考古人類學刊,第15期,49-94頁1961。
    邱弘毅 台灣西南沿海烏腳病盛行地區及蘭陽盆地居民無機砷代謝能力與健康危害之流行病學研究,國立臺灣大學流行病學研究所,1996。
    吳樂群 嘉南平原沉積物與沉積環境分析及地層對比研究。水文地質調查研究:八十八年度報告,1999。
    吳琮壬 嘉義海岸平原區末次冰期以來古沉積環境之研究。國立臺灣大學地質科學所碩士論文,2007。
    陳文山、宋時驊、吳樂群、徐澔德與楊小青 末代冰期以來台灣海岸平原區的海岸線變遷。國立臺灣大學考古人類學刊,62期40-55頁,2004。
    陳文福 台灣的地下水。遠足文化出版,2005。
    陳于高 晚更新世以來南台灣地區海水面變化與新構造運動研究。國立臺灣大學地質學研究所博士論文,1993。
    陳冠宇 台灣西南海岸平原地下水砷之遷移與富集。國立臺灣大學理學院地質科學系博士論文,2007。
    陳華玟,吳樂群 嘉南平原晚第四紀沉積物的異體地層分層建議及其古地理意義。經濟部中央地質調查所特刊,第二十五號,第59-87頁,2011。
    陳鎮東 海洋化學,國立編譯館,1994。
    陳麒全 台灣嘉南平原新東及錦湖兩地沉積物砷富集與釋出之研究,國立臺灣大學地質科學所碩士論文,2003。
    夏明鴻 台灣西南海岸平原義竹岩芯地球化學研究。國立臺灣大學地質學研究所碩士論文,1998。
    黃姿勳 台灣布袋岩芯中沉積物砷含量分布變化及其地質意義。國立成功大學地球科學所碩士論文,2009。
    畢如蓮 台灣嘉南平原地下水砷生成途徑與地質環境之初步探討。國立臺灣大學地質科學所碩士論文,1995。
    張瑞津、石再添、陳翰霖 古倒風內海地形變遷之研究。台灣之第四紀第六次研討會暨台北盆地地下地質與工程環境綜合研究成果發表會,第159-163頁,1996。
    張瑞津、鄧國雄、劉明錡 苗栗丘陵紅壤階地之地形學研究,中國地質學會八十七年年會暨學術研討會論文集,1998。
    楊詠然 末次最大冰期以來台灣西部平原的環境變遷。國立臺灣大學地質科學所碩士論文,2016。
    經濟部水資局 民國七十三年台灣水利年報:經濟部水資局,1986。
    經濟部水利署 臺灣地區地下水觀測網整體計畫,1990。
    經濟部水利署 台灣地區地下水觀測網水質常態監測與調查分析(2/2),2005。
    經濟部水利署 水利規劃試驗所 95 年度台灣地區地下水水質檢測分析與評估專題報告書,2006 a。
    經濟部水利署 臺灣地區地下水文圖圖集繪製工作(4/4)。經濟部水利署,2006 b。
    經濟部水利署 100年度地下水水質檢測分析與評估,2011。
    經濟部水利署 台灣地區地下水觀測網整體計畫精要成果彙編(81-100年),2012。
    潘友錫 台灣西南部嘉南平原沉積物砷富集機制:錦湖岩芯高解析採樣之地球化學與礦物組成證據。國立成功大學地球科學所碩士論文,2010。
    歐東坤 嘉南地區地下水砷濃度之研究。國立臺灣大學地質科學所碩士論文,2005。
    劉家全 台灣西南部泥火山泥漿及液體之生物地球化學特性及過程,國立成功大學地球科學所碩士論文,2011。
    劉振宇、王聖瑋、鄭世尉 濁水溪沖積扇南翼地層環境中砷之富集、釋出、分布即地化傳輸(1/3)。行政院國家科學委員會輔助專題研究計畫,期中進度報告,2005。
    劉聰桂 台灣地區新建地下水觀測井之地下水定年分析及垂向水質變化調查(1/4)曁台灣地區鑽井岩芯沉積物及萃取液分析-嘉南平原(三)與蘭陽平原(一)。經濟部水資源局台灣地區地下水觀測網整體計畫,2000。
    劉聰桂 台灣地區新建地下水觀測井之地下水定年分析及垂向水質變化調查(3/4)嘉南與蘭陽平原(3/4)。經濟部水利署計畫報告,2003。
    顏富士 曾文溪下游之砷異常及板岩屑與漂砂。科學發展月刊,第6卷,第3期,1978。
    顏富士、龍村倪與呂泰華 台灣省地下水含砷異常之環境模式初議。台灣環境衛生,第12卷,第1期,1980。

    英文文獻
    Alam, S., Wu, Y., Cheng, T., Silicate minerals as a source of arsenic contamination in groundwater. Water Air Soil Pollution 225:2201. DOI 10.1007/s11270-014-2201-9, 2014.
    Allaway, W.H., Agronomic Controls over the Environmental Cycling of Trace Elements. Advances in Agronomy, 20, 235–274, 1968.
    Anawar, H., Tareq, S.M., Ahmed, G., Is organic matter a source or redox driver or both for arsenic release in groundwater? Physics and Chemistry of the Earth 58–60 (2013) 49–56, 2013.
    Andreae, M.O., Arsenic in rain and the atmospheric mass balance of arsenic. Journal of Geophysical Research. 85, 4512–4518, 1980.
    Arehart, G.B., Chryssoulis, S.L., Kesler, S.E., Gold and arsenic in iron sulfides from sediment-hosted disseminated gold deposits-implications for depositional processes. Economic Geology and the Bulletin of the Society of Economic Geologists. 88, 171–185, 1993.
    Baur, W.H. & Onishi, B.M.H., Arsenic. In: Wedepohl, K.H. (Ed.), Handbook of Geochemistry. Springer-Verlag, Berlin. pp. 33-A-1–33-0-5, 1969.
    Belkin, H.E., Zheng, B., Finkelman, R.B., Human health effects of domestic combustion of coal in rural China: a causal factor for arsenic and fluorine poisoning. In: 2nd World Chinese Conf. Geological Sciences, Extended Abstr., August 2000, Stanford Univ., pp. 522–524, 2000.
    Berg, M., Trang, P.T.K., Stengel, C., Buschmann, J., Viet, P.H., Van Dan, N., Giger, W., Stuben, D., Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: The impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chemical Geology 249 (1–2), 91–112, 2008.
    Bernardez, L.A., de Andrade Lima, L.R.P., Improved method for enumerating sulfate-reducing bacteria using optical density. MethodsX, Vol. 2, P. 249-255, 2015.
    Boyle, R.W. & Jonasson, I.R., The geochemistry of As and its use as an indicator element in geochemical prospecting. Journal of Geochemical Exploration. 2, 251–296, 1973.
    Bose, P. & Sharma, A., Role of iron in controlling speciation and mobilization of arsenic in subsurface environment. Water Research, 36, 4916–4926, 2002.
    Bowell, R.J., Sorption of arsenic by iron oxides and oxyhydroxides in soils. Applied Geochemistry, Vol. 9, p. 279-286, 1994.
    BGS & DPHE, Arsenic contaminated groundwater in Bangladesh, vol. 2. Final Report, BGS Technical Report WC/00/19, 2002.
    Brookins, D.G., Eh-pH Diagrams for Geochemistry. Springer-Verlag, Berlin, 288p, 1988.
    Burgess, W.G., Hoque, M.A., Michael, H.A., Voss, C.I., Breit, G.N., and Ahmed, K.M., Vulnerability of deep groundwater in the bengal aquifer system to contamination by arsenic. Nature Geoscience, Vol 3, 2010.
    Chang, J.C. & Chen, H.L. Geomorphological changes on coastal plain in southwestern Taiwan. Western Pacific Earth Sciences 1 (1), 107–114, 2001.
    Chen, K.Y. & Liu, T.K., Major Factors Controlling Arsenic Occurrence in the Groundwater and Sediments of the Chianan Coastal Plain, SW Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, Vol. 18, No. 5, 975-994, 2007.
    Chen, S.L., Dzeng, S.R., Yang, M.H., Chlu, K.H., Shelh, G.M., and Wal, C.M., Arsenic species in groundwater of the blackfoot disease area, Taiwan. Environmental Science & Technology, 28.877-881, 1994.
    Chiou, H.Y., Chiou, S.T., Hsu, Y.H., Chou, Y.L., Tseng, C.H., Wei, M.L., and Chen, C.J., Incidence of transitional cell carcinoma and arsenic in drinking water: a follow-up study of 8,102 residents in an arseniasis-endemic area in northeastern Taiwan. American Journal of Epidemiology., 153, 411–418., 2001.
    Cronan, D.S., The mid-Atlantic Ridge near 45_N, XVII: Al, As, Hg, and Mn in ferriginous sediments from the median valley. Canadian Journal of Earth Sciences 9, 319–323, 1972.
    Dissanayake, C. B. & Chandrajith, R. Introduction to Medical Geology, Ch 7, 2009.
    Dhar, R.K., Biswas, B.K., Samanta, G., Mandal, B.K., Chakraborti, D., Roy, S., Jafar, A., Islam, A., Ara, G., Kabir, S., Khan, A.W., Ahmed, S.A. and Hadi, S.A., Groundwater arsenic calamity in Bangladesh. Current Science, 73(1), 48–59, 1997.
    Engel, R.R, Hopenhayn-Rich, C., Receveur, O., and Smith, A.H., Vascular effects of chronic arsenic exposure: a review. Epidemiologic Reviews, 16, 184–209, 1994.
    Fazal, M. A., Kawachi, T. and Ichion, E., Validity of the latest research findings on cause of groundwater Arsenic contamination in Bangladesh. Water International, 26 (2), 380–389, 2001.
    Fleet, M.E. & Mumin, A.H., Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. American Mineralogist 82, 182–193, 1997.
    Frost, D.V., Arsenicals in Biology - Retrospect and Prospect. Federation Proceedings Federation of American Societies for Experimental Biology, 26, 194–208, 1967.
    Hsu, L. M., Pleistocene formation with dissolved-in-water type gas in the Chianan Plain, Taiwan. Petrolum Geology of Taiwan 11, 27-39, 1984.
    Ioka, S., Sakai, T., Igarashi, T, Ishijima, Y., Long-term continuous in situ potentiometrically measured redox potential in anoxic groundwater with high methane and iron contents. Environmental Earth Sciences 64: 143-149, 2011.
    Itai, T., Masuda, H., Seddique, A.A., Mitamura, M., Maruoka, T., Li, X.D., Kusakabe, M., Dipak, B.K., Farooqi, A., Yamanaka, T., Nakaya, S., Matsuda, J., Ahmed, K.M., Hydrological and geochemical constraints on the mechanism of formation of arsenic contaminated groundwater in Sonargaon, Bangladesh. Applied Geochemistry 23(11), 3155–3176, 2008.
    IPCS, Arsenic and arsenic compounds. Environmental Health Criteria, No,224, 2001. http://www.inchem.org/documents/ehc/ehc/ehc224.htm
    Keon, N.E., Swartz, C.H., Brabander, D.J., Harvey, C., Hemond, H.F., Validation of arsenic sequential extraction method for evaluating mobility in sediments. Environment Science & Technology, 35(13), 2778–2784, 2001.
    Kim, M.J., Nriagu, J., Haack, S., Carbonate ions and arsenic dissolution by groundwater. Environmental Science and Technology, 34(15), 3094–3100, 2000.
    Kim, M.J., Nriagu, J., Haack, S., Arsenic species and chemistry in groundwater of southeast Michigan. Environmental Pollution, 120(2), 379–390, 2002.
    Lewis, C., Ray, D., Chiu, K.K., Primary Geologic Sources of Arsenic in the Chianan Plain (Blackfoot Disease Area) and the Lanyang Plain of Taiwan. International Geology Review, Vol. 49, p. 947-961, 2007.
    Liao, L.B., Jean, J.S., Chakraborty, S., Lee, M.K., Kar, S., Yang, H.J., Li, Z., Hydrogeochemistry of Groundwater and Arsenic Adsorption Characteristics of Subsurface Sediments in an Alluvial Plain, SW Taiwan. Sustainability, 2016.
    Lin, Z., Puls, R.W., Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process. Environmental Geology, 39, 753–759, 2000.
    Liu, C.C., Jean, J.S., Nath, B., Lee, M.K., Hor, L.I, Lin, K.H., Maity, J.P., Geochemical characteristics of the fluids and muds from two southern Taiwan mud volcanoes: Implications for water–sediment interaction and groundwater arsenic enrichment. Applied Geochemistry 24, 1793-1802, 2009.
    Liu, C.C., Maity, J.P., Jean, J.S., Reza, A.H.M.S., Li, Z.H., Nath, B., Lee, M.K., Lin, K.H., Bhattacharya, P., Geochemical characteristics of the mud volcano fluids in southwestern Taiwan and their possible linkage to elevated arsenic concentration in Chianan plain groundwater. Environmental Earth Sciences 66, 1513-1523, 2012.
    Liu, C.W., Lai, C.C., Chen, Y.Y., Lu, K.L., Hydrogeochemical and mineralogical investigationsof arsenic- and humic substance-enriched aquifers. Journal of Hydrology 498, 59-75, 2013.
    Luengo, C., Brigante, M., Avena, M., Adsorption Kinetics of Phosphate and Arsenate on Goethite. A Comparative Study. Journal of Colloid and Interface Science 311 (2), 354–360, 2007.
    Malachowski, M.E., An update on arsenic. Clinics in Laboratory Medicine, 10(3): 459-472, 1990.
    Mamindy-Pajany, Y., Hurel, C., Marmier, N., Roméo, M., Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility. Desalination 281, 93–99, 2011.
    Mandal, B.K. Chowdhury, T.R., Samanta, G., Mukherjee, D.P., Chanda, C.R., Saha, K. C., Chakraborti, D., Impact of safe water for drinking and cooking on five arsenic-affected families for 2 years in West Bengal, India. Science of the Total Environment, 218(2–3), 185–201, 1998.
    Mandal, B. K. & Suzuki, K. T., Arsenic round the world: a review, Talanta, Vol. 58, Issue 1, pp. 201–235, 2002.
    Manning, B.A. & Goldberg, S., Adsorption and Stability of Arsenic(III) at the Clay Mineral – Water Interface. Environmental Science and Technology 31, 2005–2011, 1997.
    Masuda, H., Shinoda, K., Okudaira, T., Takahashi, Y., Noguchi, N. Chlorite --- source of arsenic groundwater pollution in the Holocene aquifer of Bangladesh. Geochemical Journal 46, 381–392, 2012.
    Matschullat, J., Arsenic in the geosphere-a review. The Science of the Total Environment 249, 297-312, 2000.
    McArthur, J.M., Ravenscroft, P., Safiulla, S., Thirlwall, M.F. Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resource Research 37, 109 – 117, 2001.
    Nath, B., Jean, J.-S., Lee, M.-K., Yang, H.-J., Liu, C.-C. Geochemistry of high arsenic groundwater in Chia-Nan plain, southwestern Taiwan: possible sources and reactive transport of arsenic. Journal of Contaminant Hydrology 99, 85–96, 2008.
    Nath, B., Maity, J.P., Jean, J.S., Birch, G., Kar, S., Yang, H.J., Lee, M.K., Hazra, R., Chatterjee, D., Geochemical characterization of arsenic-affected alluvial aquifers of the Bengal Delta (West Bengal and Bangladesh) and Chianan Plains (SW Taiwan): Implications for human health. Applied Geochemistry 26, 705-713, 2011.
    Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G. and Ahmed, K. M., Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry 15 (4), 403-413, 2000.
    Nordstrom, D.K. Public health – Worldwide occurrences of arsenic in ground water. Science 296, 2143–2145, 2002.
    Onishi, H. & Sandell, E.B., Geochemistry of arsenic. Geochim. Cosmochim. Acta Materialia 7, 1–33, 1955.
    Onishi H., Arsenic, in: K.H. Wedepohl (Ed.), Handbook of Geochemistry, Springer-Verlag, New York, Vol. II-2, Chapter 33, 1969.
    Pal, T., Mukherjee, P.K. and Sengupta, S., Nature of arsenic pollutants in groundwater of Bengal Basin — a case study from Baruipur area, WestBengal, India. Current Science, 82, 554–561, 2002.
    Pichler, T., Veizer, J., Hall, G. E. M., Natural input of arsenic into a coral reef ecosystem by hydrothermal fluids and its removal by Fe (III) oxyhydroxides. Environmental Science & Technology 33, 1373-1378, 1999.
    Pontius, F.W., Brown, K.G., and Chen, C.J., Health implication of arsenic in drinking water. Journal of the American Water Works Association, 86: 52-63, 1994.
    Rickard, D. & Morse, J.W., Acid volatile sulfide (AVS), Marine Chemistry 97, 141-197, 2005.
    Seddique, A.A., Masuda, H., Mitamura, M., Shinoda, K., Yamanaka, T., Nakaya, S., Ahmed, K.M. Mineralogy and geochemistry of shallow sediments of Sonargaon, Bangladesh and implications for arsenic dynamics: Focusing on the role of organic matter. Applied Geochemistry 26, 587–599, 2011.
    Selene, C.H., Chou, J., and De Rose, C.T., Case studies–Arsenic. International Journal of Hygiene and Environmental Health, 206, 381-386, 2003.
    Sengupta, S., Sracek, O., Jean, J.-S., Lu, H.-Y., Wang, C.-H., Palcsu, L., Liu, C.-C., Jen, C.-H. Spatial variation of groundwater arsenic distribution in the Chianan plain, SW Taiwan: Role of local hydrogeological factors and geothermal sources. Journal of Hydrology 518 (2014) 393–409, 2014.
    Sengupta, S., Sracek, O., Jean, J.-S., Yang, H.J., Wang, C.H., Kar, S., Babek, O., Lee, C.Y., Das, S., Difference in attenuation among Mn, As, and Fe in riverbed sediments. Journal of Hazardous Materials 341, 277-289, 2018.
    Shamsudduha, M., Uddin, A., Saunders, J.A., Lee, M.-K. Quaternary stratigraphy, sediment characteristics and geochemistry of arsenic-contaminated alluvial aquifers in the Ganges–Brahmaputra floodplain in central Bangladesh. Journal of Contaminant Hydrology 99, 112–136, 2008.
    Shibasaki, N., Lei, P., Kamata, A. Evaluation of deep groundwater development for arsenic mitigation in western Bangladesh. Journal of Environmental Science and Health, Part A 42: 12, 1919–1932, 2007.
    Smedley, P. L. & Kinniburgh, D. G., A review of the soure, behaviour and distribution of arsenic in natural waters. Applied Geochemistry 17, 517-568, 2002.
    Steven, FJ. Humus Chemistry; Genesis, Composition, Reactions. New York: Wiley-Interscience, 1982.
    Suratman, S., Gold recovery of refractory sulfide concentrates using direct cyanide leaching with nitrite as an oxidant. Indonesian Mining Journal, Vol.19 No.3, 2016.
    Tseng, C.H., Chong, C.K., Chen, C.J., Lin, B.J. and Tai, T.Y., Abnormal peripheral microcirculation in seemingly normal subjects living in blackfoot-disease-hyperendemic villages in Taiwan. International journal of microcirculation: clinical and experimental, 15, 21–27, 1995.
    Uddin, A., Shamsudduha, M., Saunders, J.A., Lee, M.-K., Ahmed, K.M., Chowdhury, M.T. Mineralogical profiling of alluvial sediments from arsenic-affected Ganges–Brahmaputra floodplain in central Bangladesh. Applied Geochemistry 26, 470–483, 2011.
    Ure, A., Berrow, M., Chapter 3. The elemental constituentsof soils. In: Bowen, H.J.M. (Ed.), Environmental Chemistry. Royal Society of Chemistry, London, pp. 94–203, 1982.
    Wang, S. & Mulligan, C.N., Effect of natural organic matter on arsenic release from soils and sediment into groundwater, Environment Geochemistry and Health, 2006.
    Wang, S.W., Liu, C.W., Jang C.S., Factors responsible for high arsenic concentrations in two groundwater catchments in Taiwan. Applied Geochemistry 22, 460-476, 2007.
    Webster, J.G., Arsenic. In: Marshall, C.P., Fairbridge, R.W. (Eds.), Encyclopaedia of Feochemistry. Chapman Hall, London, pp. 21-22, 1999.
    WHO, Guidelines for drinking-water quality. Volume 1: Recommendations, 2nd ed. WHO, Geneva, 1993.
    WHO, Environmental Health Criteria 224: Arsenic compounds 2nd edition. WHO, Geneva, 2001.
    Yan, X.P., Kerrich, R. and Hendry, M.J., Distribution of arsenic(III), arsenic(V) and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochimica et Cosmochimica Acta, 64(15), 2637–2648, 2000.
    Yang, H.J., Lee, C.Y., Chiang, Y.J., Jean, J.S., Shau, Y.H., Takazawa, E., Jiang, W.T., Distribution and hosts of arsenic in a sediment core from the Chianan Plain in SWTaiwan: Implications on arsenic primary source and release mechanisms. Science of the Total Environment 569-570, 212-222, 2016.
    Yoshinaga, J., Chatterjee, A., Shibata, Y., Morita, M. and Edmonds, J.S., Human urine certified reference material for arsenic speciation. Clinical Chemistry, 46(11): 1781-1786, 2000.
    Yu, K.H., Chang, M.C., Yen, F.S. and Tsai, S.C., On the arsenic distribution along the coastline are of southwestern Taiwan. In: Geertman, R.M. (Ed.), 8th World Saly Symposium, May 7–11, 2000, 601–605, 2000.

    下載圖示 校內:2025-08-31公開
    校外:2025-08-31公開
    QR CODE