研究生: |
林舜寬 Lin, Shun-Kuan |
---|---|
論文名稱: |
以液相沉積二氧化矽法作為閘極介電層於氮化鎵與氮化鋁鎵異質接面場效電晶體之研究 Study of AlGaN/GaN Metal-Oxide-Heterostructure FET with a Liquid Phase Deposited Oxide as Gate Dielectric |
指導教授: |
王永和
Wang, Yeong-Her 洪茂峰 Houng, Mau-Phou 施博文 Sze, Po-Wen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 液相沉積法 、閘極接電層 、氮化鎵與氮化鋁鎵異質接面金氧半場效電晶體 |
外文關鍵詞: | gate dielectric, AlGaN/GaN MOSHFET, liquid phase deposition |
相關次數: | 點閱:72 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由液相沉積法在接近室溫時成長一有效並且低成本的二氧化矽介電層在此篇論文中將被描述。此方法在溫度40℃時沉積速率大約為每小時55nm左右,並且可獲得較高的崩潰電場超過7.3MV/cm與較低的漏電流在電場為0.9MV/cm時約10-7A/cm2左右,並且二氧化矽成長在氮化鎵或氮化鋁鎵上的缺陷密度約為3×1011cm2eV-1。在此實驗中,我們將會用螺旋電子能譜分析儀和X射線光電子能譜分析儀量測氧化層的特性。除此之外,LPD法的自我校準與不易和外界產生反應可使元件的製造更便易。於是,用液相沉積法成長二氧化矽當作閘極介電層對於AlGaN/GaN異質接面金氧半場效電晶體將被驗證。在製程中,歐姆接觸所鍍的金屬為Ti/Al/Au (80nm/100nm/130nm),而所得到的歐姆特性接觸阻抗為2.17×10-5 Ω-cm2。在蝕刻方面,本實驗採用光輔助化學濕式蝕刻(PEC),並將原本的白金電極用氧化劑K2S2O8來取代。而在MOSHFET閘極尺寸長度為2 um、寬為100 um處,當Vgs=-4V, Vds=12V,我們所得到的轉導最佳約為53 mS/mm,而汲極最大電流約為650mA/mm。接著,我們將比較AlGaN/GaN MOSHFET 和 HFET兩種元件的特性,並且由MOSHFET,我們可獲得較小的漏電流,較大的閘極擺盪電壓和較寬且平的轉導範圍。
An efficient and low cost approach for depositing uniform silicon dioxide layers on GaN by liquid phase deposition (LPD) that is near room temperature will be described. The deposited rate of SiO2 is about 55nm/hr. at 40 ℃. Breakdown electric field as high as 7.3MV/cm and leakage current as low as 10-7A/cm2 at 0.9MV/cm for the deposited oxide layers can be achieved. The trap density of SiO2 on GaN or AlGaN is about 3×1011cm2eV-1. Auger Electron Spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) will be used to characterize the oxide properties. Self-align and self- passivation process of LPD can ease the device fabrication. AlGaN/GaN metal oxide semiconductor heterostructure field effect transistors (MOSHFETs) with liquid phase deposited SiO2 as the gate dielectric will be demonstrated. Ti/Al/Au (80nm /100nm/130nm) with a specific contact resistance of 2.17*10-5 Ω-cm2 can be achieved for source/drain ohmic contacts. Photo electrochemical wet etching with K2S2O8 (peroxydisulfate) as the oxidizing agent instead of the platinum electrode is used for device isolation. The best transconductance of AlGaN/GaN MOSHFET for gate length of 2um with 100um long in width is about 53 mS/mm at Vgs=-4V, Vds=12V and the maximum drain saturation current is 650 mA/mm. Comparison between the AlGaN/GaN MOSHFETs and heterostructure field effect transistors (HFETs) will also be made. Lower leakage current and larger gate swing voltage and flatter transconductances range can be seen in MOSHFETs.
Reference :
[1] H. R. Wu, Y. W. wang and M.P.Houng,”Liquid Phase Deposited SiO2 on GaN and Its Application to MOSFET”,Thesis For Master of Science, Department of Electrical Engineering, National Cheng Kung University, 2001.
[2] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, ”Large-band gap SiC, III-V nitride, and II-VI ZnSe-based Semiconductor device technologies” , J. Appl. Phys., vol. 76 , pp.1363, 1994.
[3] S.T. Sheppard. K. Doverspike, W.L Pribble, S.T Allen. And J. Palmour, ”High power microwave GaN/AlGaN HEMTs on silicon carbide,” IEEE Electron Device Lett.. vol. 20, pp. 161-163, April 1999.
[4] J. I. Pankove, E. A. Miller and J. E. Berkeyheiser, “GaN electroluminescent diodes” , RCA Rev., vol. 32, p.383 , 1971.
[5] S.J.Pearton, GaN AND RELATED MATERIALS,ch. 1. Gordon and Breach Science Publishers.
[6] J. Edmond, H. kong and V. Dmitrieve, “Blue/UV emitters from SiC and its alloys,” List. Phys. Conf. Ser. 137, pp.515, 1994.
[7] S. J. Pearton, F. Ren, A. p. Zang and K.P.Lee, “Fabrication and performance of GaN electronic devices,” Materials Science and Engineering, R30 pp.55, 2000.
[8] Y. Uzawa, Z. Wang, A. Osinsky and B. Komiyama, “Submillimeter wave reponses in NbN/AlN/NbN tunnel junctions,” Appl. Phs. Lett. 66, pp.1992, 1995.
[9] M.A.Kahn,j. N. Kuznia, A.R. Bhattrai and D.T. Olson, “Metal conacts to gallium nitride,” Appl. Phys. Lett., vol. 62, pp.2859, 1993.
[10] T.P.Chow, R. Tyagi,“Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Electron. Dev. 41, pp.1481, 1994.
[11] Z.Z. Bandic, P. M. Bridger, E.C. Piquette, T. C. McGill, R. P. Vaudo, V. M. Phanse and J. M. Redwing, “High voltage (450 V) GaN schottky rectifiers,” Appl. Phys. Lett. Vol. 74, pp.1266, 1999.
[12] R. Gaska, J.W.Yang, A.Osinsky, Q.chen, M.A.Khan, A. O. Orlov, G.L. Snider and M.S. Shur, “Elecreon transport in AlGaN-GaN heterostructures grown on 6H-SiC substrates, “ Appl. Phys. Lett. Vol. 74, pp.1266, 1999.
[13] P. K. Wang, K. O. Schweitz, T.G. Pribicko and S.E. Mohney Department of Materials Science and Engineering, “Ohmic Contacts to n-type AlGaN and Nitride HEMT Epilayers”.
[14] I. Adessida, A. Mahajan, E. Andideh, M.A.Kahn, D.T. Olson, and J.N. Kuznia, Appl. Phys. Lett. 63, pp. 2777, 1993.
[15] R. J. Shul, G.B.McClellan, S.A. Casalnuovo, D. J. Rieger, Appl. Phys. Lett. 69, pp.1119, 1996.
[16] S. J. Pearton, C. R. Abernathy, F.Ren, J. R. Lothian, J. Vac. Sci. Technol. A11, pp.1772, 1993.
[17] A.T. Ping, I.Adesida, and M. A. Khan, Appl. Phys. Lett. 67, pp.1250,1995.
[18] X. A. Cao et al. , Appl. Phys. Lett. 75, pp. 232, 1999.
[19] Properties, Processesing and Applications of Gallium Nitride and Related Semiconductor, edited by J.H. Edgar, S.T. Strite, I. Akasaki, H.Amano, and C. Wetzel(Inspec, London, 1999).
[20] J. R. Mileham, S. J. Perton, C. R. Abern athy, J. C. Mackenzie, R. J. Shul. , J. Vac. Sci. Technol. , Vo;. A14, pp.836-839, 1996.
[21] M. S. Minsky, M. White, E. L. Hu, Appl. Phys. Lett.68(11), pp. 1531-1533, 1996.
[22] C. Youtsey, I. Adesida, and G. Bulman, Appl. Phys. Lett.71, pp.2151, 1997.
[23] C. Youtsey, I. Adesida, L. T. Romano, and G. Bulman, Appl. Phys. Lett. 72, pp.560, 1998.
[24] C. Youtsey, I. Adesida, and G. Bulman, J. Electron. Mater. 27, pp.282, 1998.
[25] C. Youtsey, I. Adesida, and L. T. Romano, Appl. Phys. Lett. 73, pp.797, 1998.
[26] L. H. Peng, C. W. Chang, J. K. Ho, C. N. Huang, and C. Y. Chen, Appl. Phys. Lett. 72, pp.939, 1998.
[27] J. A. Bardwell, I. G. Foulds, J. B. Webb, H. Tang, J. Fraser, S. Moisa, and S. J. Rolfe, J. Electron. Mater, Vol.28, pp.10, 1999.
[28] S. M. Sze, Physucs of Semiconductor Devices, 2nd ed. New York: Wiley, pp. 304-307, 1981.
[29] C. Youtsey, G. Bulman, I. Adesida, J. Electron, Mater, vol. 27, 4, pp282-287, 1998.
[30] C. Youtsey, I. Adesida, Appl.Phys. Lett, vol. 72, num. 5, pp560-562, 1998.
[31] Ren, F., Hong M., Chu, S.N.F., Marcus, M.A., Schurman, M.J., Baca, A., Pearton, S.J., and Abernathy, C.R., “Effect of temperature on Ga2O3(Gd2O3)/GaN metal metal-oxide- semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 73, pp.3893, 1998.
[32] M. Hong, K. A. Anselm, J. Kwo, H. M. Ng, J.N. Baillargeon, A. R. Kortan., J.P. Mannaerts, A. Y. Cho, C. M. Lee,J. I. Chyi and T.S. Lay, “Properties of Ga2O3(Gd2O3)/GaN metal-insulator- semiconductor diodes”, J. Vac. Sci. Technol. B, 18(3), pp.1453, 2000.
[33] H. C. Casey, G. G. Fountain, R. G. Alley, B. P. Keller, and S. P. Denbaars, “Low interface trap density for remote plasma deposited SiO2 on GaN,” Appl. Phys. Lett. , vol. 68, pp.1850, 1996.
[34] T. Homma, K. Katoh, Y. Yamada, and Y. Murao, “A Selective SiO2 Film-Formation Technology Using LPD for Fully Planarized Multilevel interconnections,” J.Electrochem. Soc., vol. 140, No. 8, pp.2410, 1993.
[35] W. J. Chang, M. P. Houng and and Y. H. Wang, “Investigation on the Conduction Mechanism of Ultrathin Fluorinated Silicon Dioxides,” Dissertation for Doctor of Philosophy, Department of Electrical Engineering, National Cheng Kung University, 2001.
[36] M. P. Houng, C. J. Huang, Y.H. Wang, N. F. Wang and W. J. Chang “Extremely low temperature formation of silicon dioxide on gallium aesenide,” J. Appl. Phys.,vol. 82, pp.5788, 1997.
[37] M. P. Houng, Y. H. Wang, C. J. Huang, S. P. Huang, and J. H. Horng, “Quality optimization of liquid phase deposition SiO2 films on gallium arsenide,” Solid-State Electronics, vol. 44, pp.1917, 2000.
[38] W. S. Lu and J. G. Hwu, “Reliable fluorinated thin gate oxides prepared by liquid phase deposition following rapid thermal process,” IEEE Electron Device Letters, vol. 17 Iss.4, pp. 172, April, 1996.
[39] J. Y. Wu, Y. H. Wang and M. P. Houng, “Investigation and Application of Liquid Phase Chemical Enhanced Oxidation Technique on GaAs MOSFET’s,” Dissertation for Doctor of Philsosphy, Department of Electrical Engineering, National Cheng Kung University, 2001.
[40] S. P. Murarka, “Thermal oxidation of GaAs,” Appl. Phys. Lett., Vol. 26, pp.180, 1975.
[41] D. N. Butcher and B. J. Sealy, “The thermal oxidation of GaAs,” J. Phys. D:Appl. Phys., vol. 11, pp. 1451, 1978.
[42] G. Liu and X. Lin, “Scaling issues of LPD protocol,” Info-tech and Info-net, 2001. Proceedings. ICII 2001 – Beijing. 2001 Inyernational Conferences on, vol.2, pp. 110, 2001.
[43] J. L. Yeh and S. C. Lee, “ Amorphous-silicon thin-film transistor with liquid phase deposition of silicon dioxide gate insulator”, IEEE Electron Device Letters , vol. 20, iss. 3, pp.138, March, 1999.
[44] H. C. Casey, G. G. Fountain, R. G. Alley, B. P. Keller and S. P. Denbaars, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN”, Appl. Phys. Lett., vol 68, iss. 13, pp. 1850, March, 1996.
[45] E. H. Nicollian and J. R. Brews, MOS(Metal Oxide Semiconductor) physics and technology, ch. 2,3,4. New Jersey: Artech House, 1982.
[46] E. H. Nicollian and J. R. Brews, MOS(Metal Oxide Semiconductor) physics and technology, ch. 8. New Jersey: Artech House, 1982.
[47] M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang and M. S. shur, “AlGaN/ GaN Metal Oxide Semiconductor Heterostructure Field Effect Transistor,” IEEE Electron Device Letters, vol. 21, no. 2, pp. 63, February, 2000.