| 研究生: |
吳阜蒼 Wu, Fuh-Tsang |
|---|---|
| 論文名稱: |
光異構性偶氮苯衍生物之合成及其在液晶顯示元件及光記錄薄膜之應用研究 Study on the Synthesis of Photoisomerizable Azobenzene Derivatives and Their Applications on LCD and Optically Recording Membranes |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsaing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 283 |
| 中文關鍵詞: | 偶氮 、液晶 |
| 外文關鍵詞: | liquid crystal, azobenzene |
| 相關次數: | 點閱:65 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中將液晶以及單體混合均勻後,利用熱聚合相分離法製成液晶聚合物混合薄膜(PDLC)。所合成之化合物均以FTIR, EA, NMR光譜確認其結構,並利用DSC, TGA以及POM進行物性分析。我們比較不同碳鏈長度(n=3, 6, 11)之偶氮苯單體以及其相對應之模式化合物,探討其對PDLC元件之光電特性的影響。研究發現,偶氮苯單體及其相對應之模式化合物於PDLC試件中,具有不同的光電特性表現。添加偶氮苯模式化合物具有提升試件之遮光效果,穩定液晶分子排列以及降低其操作電壓;而偶氮苯單體所形成之PDLC元件則無法達到光線散射之效果。添加偶氮苯模式化合物具有較佳的對比值(CR=689)以及低的飽和電壓(4.7V/μm)。所合成之偶氮苯分子均可進行可逆之光-, 以及熱-異構化反應。trans-偶氮苯分子經UV光照射後形成cis-偶氮苯異構物,可以降低PDLC試件之澄清點溫度,利用此項特性,使的添加偶氮苯分子之試件具有影像記錄之特性。另外,我們亦比較酯基液晶單體、雙苯環不同碳鏈長度之交聯劑,以及市售不同雙鍵數之交聯劑,探討其對PDLC試件之光電特性之影響。
利用上述所合成之單體聚合成之均聚合物以及共聚合物,並經由FTIR、NMR光譜分析鑑定、EA分析,利用TGA,DSC測定其熱性質以及GPC測定分子量。含有偶氮苯之聚合物如同單體具有光-,熱-異構化反應之特性,可作為光紀錄或是光開關之材料。
我們亦對全像術做研究(其為3D立體影像記錄技術),探討不同雷射光源強度、交聯劑之雙鍵數、起始劑濃度、單體與交聯劑之比例、試件厚度、以及光源夾角之影響。為了解光學活性物質之立體特異性對於全像光柵之影響,我們合成丙烯酸菠酯等光學活性單體及其外消旋混合物,量測其對全像光柵形成時之動態繞射效率變化。發現光學活性物質之立體特異性對於全像光柵確實具有影響。利用本研究所使用之感光性全像高分子薄膜所形成之全像光柵,具有良好之繞射效率(95%),解析度可達到1000 lines/mm,並具有多次記錄之特性。
Polymer dispersed liquid crystal (PDLC) composite films were fabricated by thermal polymerization with E7 liquid crystal, monomers, and novel azobenzene derivatives. All of the compounds synthesized in this study were identified by FTIR, EA and NMR, and the physical properties were analyzed by DSC, TGA and POM. We compared with the electro-optical properties of PDLC films that doped azobenzene monomer and its relative model compound in various alkyl chain lengths (n= 3, 6, 11). We found that the azobenzene monomer shows different behaviors in the electro-optical property from its relative model compound. The addition of azobenzene model compound can improve the ability for light scattering of PDLC sample and it can also stabilize the liquid crystal and decrease the threshold voltage. The addition of azobenzene monomer decreases the ability for light scattering of PDLC sample. The azobenzene model compound showed better electro-optical and thermal-optical properties, having a higher contrast ratio (CR= 689) and a lower saturation voltage (4.7 V/μm). All the azobenzene molecules can be photoisomerized through UV light irradiation, following the mechanism of isomerization. The reversible photo and heat isomerization property was studied. The cis-azobenzene that was transformed from the trans-azobenzene irradiated by UV light can decrease the clearing point of PDLC samples. We used this unique characteristic to record image patterns and it worked successively. We also synthesize various monomers such as ester liquid crystal monomers, bis-acrylloyloxybiphenyl derivatives with various alkyl chain length. We study the effect of these monomers or commercial multifunctional monomers on the electric-optical properties of PDLC films.
We synthesized the homopolymer and copolymers with ester or azobenzene monomers mentioned above. The functional groups were identified by FTIR, NMR and EA. The thermal properties and molecular weight were also analyzed by TGA, DSC and GPC. The polymers that contained azobenzene molecules could proceed reversible light-, and thermal-isomerization process as monomers. It can be used as image record or photo-switchable material.
We also do the research of holography, it is a technology of 3D image record. The effects of the light intensity of incident laser beams, multifunctional monomers, initiator concentrations, feed monomer concentrations, incident writing angles, grating period and film thickness on the diffraction efficiencies were investigated. To investigate the chirality of monomers on the holographic gratings, chiral monomes and the relative racemates(BA and BMA derived form borneol) were synthesized and the dynamic diffraction efficiency was studied. It was found that the steric effects of chiral compounds affect the diffraction efficiency of holograpgic grating of the composite films. The photosensitive holographic polymer films fabricated in this study reveal high diffraction efficiency (95%) and the resolution can up to 1000 lines/mm. The plural data recording can be recorded on the same film successively.
參考文獻
1.松本正一,角田市良著,劉瑞祥譯,液晶之基礎與應用,國立編譯館出版 (1996).
2.S. T. Wu, D. K. Yang, Reflective Liquid Crystal Dispal (John Wiley and Sons, New York, 2001).
3.P. J. Colling, M. Hird, Introduction to Liquid Crystals Chemistry and Physics (Taylor and Francis, 1997).
4.I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystal (World Scienific, USA, 1993).
5.D. Demus, J. Gooby, G. W. Gray, H. W. Spiess, V. Vill, Handbook of Liquid Crystals ( 2a, 2b, Wiley-VCH, 1998).
6.F. Reinitzer, Monatsh. Chem., 9, 421 (1888).
7.O. Z. Lehmann, Phys. Chem, 4, 4621 (1889).
8.C. Hilsum, UK Patent, 1442360 (1976).
9.L. Boutteiller, P. L. Barny, Liq. Cryst. 21, 157 (1996).
10.Y. H. Fan, H. Ren, S. T. Wu, Appl. Phys. Lett., 82, 2945 (2003).
11.L. Petti, P. Mormile, W. J. Blau, Opt. Las. Eng., 39, 369 (2003).
12.P. S. Drzaic, J. Appl. Phys., 60, 2142 (1986).
13.Y. H. Lin, H. Ren, S. T. Wu, Appl. Phys. Lett., 84, 4083 (2004).
14.M. Boussoualem, F. Roussel, M. Ismaili, Phys. Rev. E, 69, 31702 (2004).
15.J. L. Fergason, SID Inter. Symp. Digst, 16, 68 (1985).
16.B. G. Wu, J. L. West, J. W. Doane, J. Appl. Phys., 62, 3925 (1987).
17.C. E. Hoppe, M. J. Galante, P. A. Oyanguren, Macromol. Chem. Physic., 204, 928 (2003).
18.T. Kajiyama, A. Miyasato, H. Kikuchi, Y. Morimura, Chem. Lett., 18, 813, (1989).
19.A. Andreau, L. Sannier, F. Gyselinck, Mol. Cryst. Liq. Cryst., 364, 919 (2001).
20.E. Grosicka, M. Mucha, Mol. Cryst. Liq. Cryst., 353, 417 (2000).
21.P. Mormile, P. Musto, G. Ragosta, P. Villano, Appl. Phys. B, 70, 249 (2000).
22.N. H. Park, S. Cho, J. Y. Kim, K. D. Suh, J. Appl. Polym. Sci., 77, 3178 (2000).
23.S. J. Chang, C. M. Lin, A. Y. G. Fuh, Jpn. J. Appl. Phys., 35, 2180 (1996).
24.R. A. Vara, D. W. Tomlin, M. D. Schulte, T. J. Bunning, Polymer, 42, 1055 (2001).
25.S. Zumer, J. W. Doane, Phys. Rev. A, 34, 3373 (1986).
26.N. K., Park, S. A. Cho, J. Y. Kim, K. D. Suh, J. Appl. Polym. Sci., 77, 3178 (2000).
27.G. P. Motgomery, A. V. Nuno, Appl. Opt., 26, 738 (1987).
28.S. I. Park, N. H. Park, K. D. Suh, Liq. Cryst., 29, 6 (2002).
29.B. G. Wu, J. H. Erdmann, J. W. Doane, Liq. Cryst., 5, 1453 (1989).
30.J. J. Wu, C. M. Wang, S. H. Chen, Jpn. J. Appl. Phys., 35, 2681 (1996).
31.J. J. Wu, C. M. Wang, W. Y. Li, S. H. Chen, Jpn. J. Appl. Phys., Part 1, 12A, 6434 (1998).
32.S. H. Lee, T. K. Lim, S. T. Shin, K. S. Park, Jpn. J. Appl. Phys., 41, 208 (2002).
33.M. Irie, Chem. Rev., 100, 1683 (2000).
34.H. B. Laurent, H. Durr, Pure Appl. Chem., 73, 639 (2001).
35.A. V. El’Tsov, Y. E. Sviridov, J. Whittal, Organic Photochromes (Bureau, New York, Ch. 3, 1990).
36.永松元太郎著,劉瑞祥編譯,感光性高分子,復文書局(1987).
37.A. Altomare, C. Carlini, F. Cirdelli, R. Solaro, Polymer, 24, 95 (1983).
38.A. S. Angeloni, D. Caretti, C. Carlini, Liq. Cryst., 4, 513 (1989).
39.A. Natansohn, P. Rochon, Chem. Rev., 102, 4139 (2002).
40.T. Ikeda, S. Horiuchi, D. B. Karanjit, S. Kurihara, S. Tazuke, Macromol., 23, 36 (1990).
41.K. Matczyszyn, S. Bartkiewicz, B. Sahraoui, Opt. Mater., 20, 57 (2002).
42.S. Kurihara, D. Yoneyama, T. Ogata, T. Nonaka, J. Appl. Polym. Sci., 89, 943 (2003).
43.A. Bobrovsky, N. Boiko, K. Shaumburg, Mol. Crys. Liq. Cryst., 352, 368 (2000).
44.S. R. Keum, C. H. Cho, Y. K. Choi, Dyes Pigments, 60, 147 (2004).
45.T. Ikeda, T. Sasaki, H. B. Kim, J. Phys. Chem., 95, 509 (1991).
46.T. Sasaki, T. Ikeda, K. Ichimura, Macromol., 25, 3807 (1991).
47.S. Kurihara, S. Sakamoto, T. Nonaka, Macromol., 31, 4648 (1998).
48.J. H. Kim, K. M. Hong, H. S. Na, Y. K. Han, Jpn. J. Appl. Phys., 40, 1585 (2001).
49.Y. K. Han, B. S. Ko, Opt. Mater., 21, 621 (2002).
50.S. Wu, S. Yao, W. She, D. Luo, H. Wang, J. Mater. Sci., 38, 401 (2003).
51.O. Tsutsumi, T. Kitsunai, A. Kanazawa, T. Shiono, T. Ikeda, Macromol., 31, 355 (1998).
52.Y. Wu, Q. Zhang, A. Kanazawa, T. Shiono, T. Ikeda, Y. Nagase, Macromol., 32, 3951 (1999).
53.O. Tsutsumi, Y. Demachi, A. Kanazawa, T. Shiono, T. Ikeda, Y. Nagase, J. Phys. Chem. B, 102, 2869 (1998).
54.H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, Chem. Mater., 10, 1402 (1998).
55.H. K. Lee, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, J. Appl. Phys., 86, 5927 (1999).
56.A. Y. G. Fuh, C. R. Lee, K. T. Cheng, Jpn. Appl. Phys., 42, 4406 (2003).
57.J. H. Liu, H. Y. Wang, J. Appl. Polym. Sci., 92, 789 (2004).
58.J. H. Liu, P. C. Yang, J. Appl. Polym. Sci., 91, 3693 (2004).
59.H. J. Haitjema, G. L. Morgen, Y. Y. Tan, G. Challa, Macromol., 27, 6201 (1994).
60.S. Silong, M. R. Lutfor, M. Z. A. Rahman, W. M. Z. W. Yunus, M. J. Haron, M. B. Ahmad, W M. D. W. Yusoff, J. Appl. Polym. Sci., 86, 2653 (2002).
61.尤舜宗,高分子側鏈長度對PSCT液晶顯示器光電特性效應之研究,國立成功大學化工研究所碩士論文 (2001).
62.M. Li, C. Guo, Liq. Cryst., 29, 1031 (2002).
63.P. R. Patel, J. S. Dave, Liq. Cryst., 30, 691 (2002).
64.王素誼,光異構性偶氮形液晶之合成及其光電特性探討,國立成功大學化工研究所碩士論文 (2002.)
65.楊博智,含硝基偶氮苯衍生基光敏性液晶高分子之合成及特性探討,國立成功大學化工研究所碩士論文 (2003).
66.M. Portugall, H. Ringsdorf, R. Zentel, Makrocol. Chem, 183, 2311 (1982).
67.R. A. M. Hikmet, J. Lub, A. J. W. Tol, Macromol., 28, 3313 (1995).
68.J. Lub, D. J. Broer, R. A. M. Hikmet, K. G. J. Nierop, Liq. Cryst., 18, 319 (1995).
69.K. Kurschner, P. Strohriegl, Liq. Cryst., 27, 1595 (2000).
70.蔡月娥,雙官能基單體間隙長度對PSCT液晶顯示器光電特性效應之研究(2000).
71.A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, J. Phys. Chem. B, 101, 2806 (1997).
72.O. Tsutsumi, T. Shiono, T. Ikeda, G. Galli, J. Phys., Chem. B, 101, 1332 (1997).
73.E. I. Demiphov, M. V. Kozlovsky, Liq. Cryst., 18, 911 (1995).
74.A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, Liq. Cryst., 27, 1387 (2000).
75.A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, Liq. Cryst., 27, p. 1381 (2001).
76.N. Kosaka, Y. Oda, T. Hiyama, Macromol., 37, 3159 (2004).
77.Y. Wu, A. Kanazawa, T. Shiono, T. Ikeda, Q. Zhang, Polymer, 40, 4787 (1999).
78.T. Yamamoto, M. H. Hasegawa, T. Siono, T. Ikeda, J. Phys. Chem. B, 103, 9873 (1999).
79.T. Ikeda, Y. Wu, Pure Appl. Chem., 71, 2131 (1999).
80.T. Yamamoto, M. Hasegawa, A. Kanazawa, T. Shiono, T. Ikeda, J. Mater. Chem., 10, 337 (2000).
81.M. Han, S. Morino, K. Ichimura, Macromol., 33, 6360 (2000).
82.K. G. Yager, G. J. Barrett, Curr. Opin. Solid Mat. Sci., 5, 487 (2001).
83.A. Tork, P. Nagtegaele, T. V. Galstian, Syn. Met., 127, 81 (2002).
84.O. V. Yaroshchuk, A. D. Kiselev, Y. Zakreskyy, T. bidna, J. Kelly, L. C. Chien, J. Lindau, Phys. Rev. E, 68, 11803 (2003).
85.D. Li, J. Yang, R. Demadi, Opt. Commun., 235, 275 (2004).
86.A. Emoto, H. Ono, N. Kawatsuki, Jpn. J. Appl. Phys., 43, L293 (2004).
87.U. Wiesner, M. Antoietti, C. Boffel, H. W. Spiess, Macromol. Chem., 191, 189 (1990).
88.H. Menzel, B. Weichrt, A. Schmidt, S. Paul, W. Knoll, J. Stumpe, T. Fischer, Langmuir, 10, 1926 (1994).
89.J. G. Meler, R. Ruhmann, J. Stumpe, Macromol., 33, 843 (2000).
90.M. Han, S. Morino, K. Ichimura, Macromol., 33, 6360 (2000).
91.K. Matezyszan, S. Bartkiewicz, B. sahraoui, Opt. Mater., 20, 57 (2002).
92.A. Mazzula, A. Dastoli, G. Russo, L. Lucchetti, G. Cipparrone, Liq. Cryst., 30, 87 (2003).
93.Y. Kawanishi, T. Tamaki, K. Ichimura, Polym. Mater. Sci. Eng., 66, 263 (1992).
94.G. H. Kim, S. Enomoto, A. Kanazawa, T. Shiono, T. Ikeda, L. S. Park, Appl. Phys. Lett., 75, 3458 (1999).
95.Y. Kawashima, M. Nakagawa, K. Ichimura, J. Mater. Chem., 14, 328 (2004).
96.P. Hariharan, Optical Holography–Principles, Techniques and Applications, Cambridge University Press, Cambridge (1984).
97.H. J. Eichler, P. Gunter and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag Press, Berlin, 1986).
98.P. Das, Lasers and Optical Engineering (Springer-Verlag Press, New York, 1991).
99.P. Gunter and J. P. Huignaed, Photorefractive Materials and Their Applications (Springer-Vrlag, Berlin, 1989).
100.E. Hetch, A. Zajac, Optics (2 nd ed., Addison-Wesley, 1987).
101.H. Kogelnik, Bell Tesc. J., 48, 2909 (1969).
102.R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, Chem. Phys., 245, 463 (1999).
103.T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, Annu. Rev. Mater. Sci., 30, 83 (2000).
104.R. P. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, T. J. Bunning, Appl. Spectro., 54, 12A (2000).
105.T. J.Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, 36, 2699 (1995).
106.A. Y. G. Fuh, T. C. Ko, M. S. Tsai, C. Y. Huang, J. Appl. Phys., 83, 2 (1998).
107.A. Y. G. Fuh, M. S. Tsai, C. R. Lee, Y. H. Fan, Phys. Rev. E, 62, 3 (2000).
108.蔡福人,含菠酯基光學活性高分子之合成及其物性探討與其在光學分割之應用研究,國立成功大學化工研究所博士論文 (2000).
109.J. H. Liu, H. T. Liu, F. R. Tsai, Polymer International, 42, 385 (1997).
110.J. H. Liu, J. C. Shih, C. H. Shih, W. T. Chen, J. Appl. Polym. Sci., 81, 3538 (2001).
111.葛聰智,聚合物-液晶混合材料在全像光柵應用之研究,國立成功大學物理研究所碩士論文 (1996).
112.黃莉茱,聚合物混合液晶材料中加入主客效應染料對產生全像光柵之影響,國立成功大學物理研究所碩士論文 (1998).
113.李佳榮,液晶-聚合物混合薄膜全像光柵中光耦合動態效應之研究,國立成功大學物理研究所碩士論文 (1999).
114.S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R. F. Madrigal, M. Ulibarrena, D. Levy, Appl. Opt., 37, 7604 (1998).
115.R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J.Bunning, Chem. Mater., 5, 1533 (1993).
116. K. Curtis, D. Psalties, Appl. Opt., 31, 7425 (1992).
117.A. Pu, K. Curtis, D. Psaltis, Opt. Eng., 35, 2824 (1996).
118.J. P. Fouassier, F. M. Savary, Opt. Eng., 35, 304 (1996).
119.R. K. Kostuk, 38, 1357 (1999).
120.A. Y. G. Fuh, C. R. Lee, K. T. Cheng, Jpn. J. Appl. Phys. 1, 42, 4406 (2003).
121.A. Emoto, H. Ono, N. Kawatsuki, Jpn. J. Appl. Phys. 2, 11, 43 (2004).
122.A. Y. G. Fuh, M. S. Tsai, T. C. Liu, L. C. Chien, Jpn. J. Appl. Phys. Phys., 36, 6839 (1997).
123.J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. V. Cantu, V. L. Colin, Appl. Opt., 39, 2353 (2000).
124.N. Yoshimoto, S. Morino, M. Nakagawa, K. Ichimura, Opt. Lett., 27, 182 (2002).
125.A. Y. G. Fuh, C. R. Lee, C. C. Liao, K. J. Shyu, P. M. Liu, K. Y. lo, Opt. Comm., 187, 193 (2001).
126.K. Curtis, D. Psaltis, Appl. Opt., 33, 5396 (1994).
127.T. Karasawa, Y. Taketomi, Jpn. J. Appl. Phys., 36, 6388 (1997).
128.S. Blaya, R. Mallavia, L. Carretero, A. Fimia, R. F. Madrigal, Appl. Phys. Lett., 73, 7604 (1998).
129.T. J. Bunning, L. V. Natarajan, V. P. Tondigli, R. L. Sutherland, J. Polym. Sci. Polym. Phys., 35, 2825 (1997).
130.R. T. Pogue, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, R. L. Sutherland, T. J. Bunning, Polym., 41, 733 (2000).
131.W. J. Tomlinson, E. A. Chandross, H. P. Weber, G. D. Aumiller, Appl. Opt., 15, 534 (1976).
132.J. M. Moran, I. P. Kaminow, App. Opt., 12, 1964 (1973).
133.D. Duca, A. V. Sukhov, C. Umeton, Liq. Cryst., 26, 931 (1999).
134.D. J. Feng, H. Yoon, D. H., Mol. Cryst. Liq. Cryst., 406, 295 (2003).
135.K. G. Yager, C. J. Barrett, J. Chem. Phys., 120, 1089 (2004).
136.J. H. Sung, S. Hirano, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, Chem. Mater., 14, 385 (2002).
137.V. J. Tomlinson, E. A. Chandross, H. P. Weber, G. D. Aumiller, Appl. Opt., 15, 534 (1976).
138.G. Cipparrone, A. Mazzulla, M. V. Kozlovsky, Mol. Mater, 12, 359 (2000).
139.L. M. Blinov, R. Barberi, G. Cipparrone, Mol. Cryst. Liq. Cryst., 355, 359 (2001).
140.T. Ikeda, Mater. Chem., 13, 2037 (2003).
141.W. J. Gambogi,K. W. Steijn, S. R. T. Duzuck, J. Kelly, SPIE 2152, 282 (1994).
142.S. H. Stevenson, M. L. Armstrong, P. J. O’Connor, D. F. Tipton, SPIE 2333, 60 (1995).
143.S. Clixto, Appl. Opt., 26, 3904 (1987).
144.Y. B. Boiko, V. S. Solovjer, S. Clixto, D. J. Lougnot, J. Appl. Opt., 33, 787 (1994).
145.A. Y. G. Fuh, M. S. Tsai, L. J. Huang, T. C. Liu, Appl. Phys. Lett., 74, 2572 (1999).
146.N. Yoshimoto, S. Morino, M. Nakagawa, K. Ichimura, Opt. Lett., 27, 182 (2002).