| 研究生: |
周廣靈 Zhou, Guang-Ling |
|---|---|
| 論文名稱: |
含電變流體與磁變流體週期結構之扭轉波轉分析 Torsional Wave Propagation of Periodic Structures with ER and MR fluid |
| 指導教授: |
陳聯文
Chen, Lien-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 電流變流體 、磁流變流體 、扭轉波 、超常材料 |
| 外文關鍵詞: | ER fluid, MR fluid, torsional wave, metamaterials |
| 相關次數: | 點閱:82 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要研究扭轉波在含拘束層的電流變流體(ER)和磁流變流體(MR)軸的波傳現象,首先以有限元素模型來推導其運動方程式,再配合轉移矩陣來計算系統的能隙結構圖,希望能藉由外加電場或磁場的不同來改變電流變流體和磁流變流體的剪力模數,來達到調整能隙範圍大小的變化,形成一個可主動控制的濾波器。同時利用了電流變流體和磁流變流體來設計一超常材料柱,將其置於夾層中,視為一個不計質量的彈簧,來進行扭轉波在此結構上的波傳分析,並利用此材料在剪力模數上可調變的特性,同樣的來進行能隙範圍大小的變化。
加入兩種智能材料方面確實可以利用外加電場和磁場的改變,來使此系統的能隙的位置和範圍產生變化,並可利用系統結構參數的改變加以配合,來達到主動的調變機制。在超常材料柱方面,有效負質量確實可以讓波傳在能隙內具有較大的衰退速度,也確實可以利用電流變流體和磁流變流體來達到〝停止帶位置和範圍〞的控制,利用結構參數的變化也可以達到停止帶大小的控制。
In this study, the wave propagation of torsional wave in three-layer with electrorheological(ER) or magnetorheological(MR) fluids have been investigated. First, we use finite element model to derive the governing question and then follow the transfer matrix method to plot the band-gap diagram. The approach utilizes the property of ER and MR materials, that can change the material properties to control the stop and pass band regions in the frequency spectra. Then, we use the electrorheological and magnetorheological to construct a metamaterial bar, and tune the shear modulus to control the propagation of torsional wave.
With the two smart materials ER fluid and MR fluid, it can really change the position and the frequency of the stop band by tune the electrical field or magnetic field and the parameter of structure. In metamaterial bar, when effective mass density occurs in the gap it yields significant spatial attenuation of the wave amplitude. By tune the electrical field or magnetic field and the parameter of structure can also be changed the position and the frequency of the stop band.
[1]M. Sigalas and C. M. Soukoulis,“Elastic-wave propagation through disordered and/or absorptive layered systems”, Physical Review B, Volume 51, Page 2780–2789 (1995)
[2]J.S. Jensen, "Phononic band gaps and vibrations in one- and two-dimensional mass–spring structures", Journal of Sound and Vibration, Volume 266, Page 1053–1078 (2003)
[3]Gang Wang, Dianlong Yu, Jihong Wen, Yaozong Liu and Xisen Wen, “ One-dimensional Phononic Crystals with locally resonant structures”, Physics Letters A, Volume 327, Issues 5-6 (2004)
[4]Dianlong Yu, Yaozong Liu, Honggang Zhao, Gang Wang, and Jing Qiu, “Flexural vibration band gaps in Euler-Bernoulli beams with locally resonant structures with two degrees of freedom”, Physical Review B, Volume 73 (2006)
[5]A.-Li Chen and Yue-Sheng Wang,“Study on band gaps of elastic waves propagating in one-dimensional disordered phononic crystals”, Physica B, Volume 392, Page 369–378 (2007)
[6]Zhi-Zhong Yan, Chuanzeng Zhang and Yue-Sheng Wangb, “Wave propagation and localization in randomly disordered layered composites with local resonances”, Wave Motion (2010)
[7]C. Goffaux, J. Sanchez-Dehesa and A. Levy Yeyati, "Evidence of Fano-Like Interference Phenomena in Locally Resonant Materials" , Physical Review Letters, Volume 88, Number 22 (2002)
[8]Kin Ming Ho, Chun Kwong Cheng, Z. Yang,a) X. X. Zhang, and Ping Sheng,"Broadband locally resonant sonic shields", Applied Physics Letters, Volume 83, Number 26 (2003)
[9]Ce´cile Goffaux and Jose´ Sa´nchez-Dehesa, "Two-dimensional phononic crystals studied using a variational method: Application to lattices of locally resonant materials", Physical Review B, Volume 67 (2003)
[10]Ce´cile Goffaux, "Comparison of the sound attenuation efficiency of locally resonant materials and elastic band-gap structures", Physical Review B, Volume 70 (2004)
[11]M. Hirsekorn , P.P. Delsanto , N.K. Batra , P. Matic,"Modelling and simulation of acoustic wave propagation in locally resonant sonic materials", Ultrasonics, Volume 42, Issues 1-9, Pages 231-235 (2004)
[12]Martin Hirsekorn,"Small-size sonic crystals with strong attenuation bands in the audible frequency range", Applied Physics Letters, Volume 84, Number 17, (2004)
[13]Gang Wang, Xisen Wen, JihongWen, Lihui Shao, and Yaozong Liu, "Two-Dimensional Locally Resonant Phononic Crystals with Binary Structures", Physical Review Letters, Volume 93, Number 15 (2004)
[14]Dianlong Yu, Yaozong Liu, Honggang Zhao, Gang Wang, and Jing Qiu, "Flexural vibration band gaps in Euler-Bernoulli beams with locally resonant structures with two degrees of freedom", Physical Review B, Volume 73 (2006)
[15]R. Sainidou, B. Djafari-Rouhani, Y. Pennec, and J. O. Vasseur, "Locally resonant phononic crystals made of hollow spheres or cylinders", Physical Review B, Volume 73 (2006)
[16]M Ruzzene and A Baz,“Attenuation and localization of wave propagation in periodic rods using shape memory inserts”, Smart Materials and Structures, Volume 9, Page 805–816 (2000)
[17]M Ruzzene and A Baz,“Control of Wave Propagation in Periodic Composite Rods Using Shape Memory Inserts”, Journal of Vibration and Acoustics, Volume 122, Issue 2 (2000)
[18]A. Baz,“Active Control of Periodic Structures” Journal of Vibration and Acoustics, Volume 123, Issue 4 (2001)
[19]Amit Singh, Darryll J Pines and Amr Baz, “Active/passive reduction of vibration of periodic one-dimensional structures using piezoelectric actuators”, Smart Materials and Structures 13, Page 698–711 (2004)
[20]Li Fengming, Wang Yuesheng and Chen Ali,“Wave Localization in Randomly Disordered Periodic Piezoelectricrods”, Acta Mechanica Solida Sinica, Volume 19, Number 1 (2006)
[21]A-Li Chena, Feng-Ming Li and Yue-Sheng Wang,“Localization of flexural waves in a disordered periodic piezoelectric beam”, Journal of Sound and Vibration, Volume 304, Page 863–874 (2007)
[22]Yi-Ze Wang, Feng-Ming Li, Kikuo Kishimoto, Yue-Sheng Wang and Wen-Hu Huang,“Wave localization in randomly disordered layered three-component phononic crystals with thermal effects”, Archive of Applied Mechanics, Volume 80, Number 6, Page 629–640 (2010)
[23]Y. Choi, A.F. Sprecher and H. Conrad, "Vibration Characteristics of a Composite Beam Containing an Electrorheological Fluid", Journal of Intelligent Material Systems and Structures, Volume 1 Number 1, Page 91-104 (1990)
[24]Chunking Lee, "Finite Element Formulation of a Sandwich Beam with Embedded Electro-Rheological Fluids", Journal of Intelligent Material Systems and Structures September, Volume 6, Number 5, Page 718-728 (1995)
[25]Melek Yalcintas and John P. Coulter, "Electrorheological Material Based Adaptive Beams Subjected to Various Boundary Conditions", Journal of Intelligent Material Systems and Structures September, Volume 6, Number 5, Page 700-717 (1995)
[26]W H Li, G Chen and S H Yeo, "Viscoelastic properties of MR fluids", Smart Materials and Structures, Volume 8, Number 4 (1999)
[27]Melek Yalcintas and Heming Dai, "Magnetorheological and electrorheological materials in adaptive structures and their performance comparison", Smart Materials and Structures, Volume 8, Number 5 (1999)
[28]Kexiang Wei, Guang Meng, Wenming Zhang and Shuo Zhou, "Vibration Characteristics of Rotating Sandwich Beams Filled with Electrorheological Fluids", Journal of Intelligent Material Systems and Structures, Volume 18, Number 11, Page 1165-1173 (2007)
[29]Mikel Zubieta, Maria Jesus Elejabarrieta and Mounir Bou-Ali, "A numerical method for determining the shear stress of magnetorheological fluids using the parallel-plate measuring system", Rheologica Acta, Volume 48, Number 1, Page 89-95 (2009)
[30]Jia-Yi Yeh, "Vibration and damping characteristics analysis of a rotating annular plate with electrorheological treatment", Smart Materials and Structures, Volume. 19 (2010)
[31]Vasudevan Rajamohan, Ramin Sedaghati and Subhash Rakheja, "Vibration analysis of a multi-layer beam containing magnetorheological fluid", Smart Materials and Structures, Volume 19 (2010)
[32]Victor G Veselago, “The Electrodynamics of Substances With Simultaneously Negative Values of ε and μ”, Soviet Physics-Uspekhi, Volume 10, Number 4 (1968)
[33]D. R. Smith, J. B. Pendry and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index", Science, Volume 305, Number 5685, Pages 788-792 (2004)
[34]Steven A Cummer and David Schurig, "One path to acoustic cloaking", New Journal of Physics, Volume 9 (2007)
[35]Pete Vukusic and J. Roy Sambles, "Photonic structures in biology", Nature, Volume 424 (2003)
[36]Stefan Linden, Christian Enkrich, Martin Wegener, Jiangfeng Zhou, Thomas Koschny and Costas M. Soukoulis, "Magnetic Response of Metamaterials at 100 Terahertz", Science, Volume 309, Number 5700 (2004)
[37]Jun Mei, Zhengyou Liu, Weijia Wen and Ping Sheng, "Effective Mass Density of Fluid-Solid Composites" , Physical Review Letter, Volume 96 (2006)
[38]Ying Wu, Yun Lai and Zhao-Qing Zhang, "Effective medium theory for elastic metamaterials in two dimensions" , Physical Review B, Volume 76 (2007)
[39]Sigalas, M. M. and Economou E. N. , "Elastic and acoustic wave band structure" , Journal of Sound and Vibration, Volume 158, Issue 2, Pages 377-382 (1992)
[40]C. G. Poulton, A. B. Movchan, R. C. McPhedran, N. A. Nicorovici and Y. A. Antipov, "Eigenvalue problems for doubly periodic elastic structures and phononic band gaps" , Volume 456 (2000)
[41]Zhengyou Liu, Xixiang Zhang, Yiwei Mao, Y. Y. Zhu, Zhiyu Yang, C. T. Chan and Ping Sheng, "Locally Resonant Sonic Materials" , Science, Volume 289 (2000)
[42]Xiangdong Zhang and Zhengyou Liu, "Negative refraction of acoustic waves in two-dimensional phononic crystals" , Applied Physics Letters, Volume 85, Issue 2 (2004)
[43]Jensen Li and C. T. Chan, "Double-negative acoustic metamaterial", Physical Review E, Volume 70, Issue 5 (2004)
[44]Graeme W Milton1 and John R Willis, "On modifications of Newton's second law and linear continuum elastodynamics" , Proceedings of The Royal Society A, Volume 463, Number 2079 (2007)
[45]Zhengyou Liu,C. T. Chan,and Ping Sheng,"Analytic model of phononic crystals with local resonances", Physical Review B, Volume 71 (2005)
[46]Vladimir Fokin, Muralidhar Ambati, Cheng Sun, and Xiang Zhang, "Method for retrieving effective properties of locally resonant acoustic metamaterials", Physical Review B, Volume 76 (2007)
[47]Shanshan Yao , Xiaoming Zhou and Gengkai Hu,“Experimental study on negative effective mass in a 1D mass–spring system ”, New Journal of Physics, Volume 10, Issue 4 (2008)
[48]H.H. Huang, C.T. Sun, G.L. Huang,“On the negative effective mass density in acoustic metamaterials”, International Journal of Engineering Science, Volume 47, Page 610–617 (2009)
[49]H H Huang and C T Sun,“Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density”, New Journal of Physics, Volume 11 (2009)
[50]Sam Hyeon Lee, Choon Mahn Park, Yong Mun Seo, Zhi Guo Wang, Chul Koo Kim,“Acoustic metamaterial with negative density”, Physics Letters A,Volume 373, Page 4464–4469 (2009)
[51]Simon A. Pope , Steve Daley, "Viscoelastic locally resonant double negative metamaterials with controllable effective density and elasticity", Physics Letters A, Pages 4250–4255 (2010)
[52]G. L. Huang and C. T. Sun, "Band Gaps in a Multiresonator Acoustic Metamaterial", Journal of Vibration and Acoustics, Volume 132, Issue 3 (2010)
[53]王剛, 溫熙森, 溫激鴻, 郁殿龍, 劉耀宗, 韓小云,“Phononic Crystals 聲子晶體”, Page 203 (2008)
[54]D. Yu, Y. Liu, G. Wang, L. Cai and J. Qiu,“Low frequency torsional vibration gaps in the shaft with locally resonant structures ”, Physics Letters A, Volume 348, Issue 3-6, Page 410-415 (2006)
[55]M. Yalcintas, J. P. Coulter and D. L. Don, “Structural modeling and optimal control of control of electrorheological materias based adaptive beams”, Smart Material and Structures, Volume 4, Number 3 (1995)
[56]J. Ferguson and Z. Kemblowski,“Applied Fluid Rheology”(1991)
[57]Tian Hao, Akiko Kawai and Fumikazu Ikazaki, "Mechanism of the Electrorheological Effect: Evidence from the Conductive, Dielectric, and Surface Characteristics of Water-Free Electrorheological Fluids", Langmuir, Volume 14, Pages 1256–1262 (1998)
[58]Xinchun Guana, Xufeng Donga, Jinping Ou, "Magnetostrictive effect of magnetorheological elastomer", Journal of Magnetism and Magnetic Materials, Volume 320, Pages 158–163 (2008)