簡易檢索 / 詳目顯示

研究生: 蔡勝傑
Tsai, Sheng-Chieh
論文名稱: 提升氮化銦鎵/氮化鎵多重量子井發光二極體之光學表現
Improving optical performance of InGaN/GaN multiple quantum wells based light-emitting diodes
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 135
中文關鍵詞: 發光二極體三五族氮化物半導體量子點外部量子效率量子侷限史塔克效應
外文關鍵詞: Light-emitting diode, III –V nitride semiconductor, Quantum dot, External quantum efficiency, Quantum confined Stark effect
相關次數: 點閱:101下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用有機金屬化學氣相沉積法成長,所製作的氮化銦鎵/氮化鎵多重量子井系列之紫外光、藍光與綠光發光二極體系統,經過封裝後測試,針對不同光別提出有效提升發光二極體光學表現之方法。吾人利用高解析穿透式電子顯微鏡探測材料之微結構;利用掃描式電子顯微鏡了材料之表面形貌,利用高解析X光繞射及分析法解析薄膜之結晶性及缺陷性質,利用光激發光譜進行薄膜光學性質之整合性研究,最後使用電致發光系統得到元件光電特性之整合性研究本論文依研究主題分為三大部分:
    首先在近紫外光系統:吾人透過調變緩衝層的壓力,控制成核薄膜在低壓下朝向偏平面的成長,亦或是使成核薄膜在高壓下朝向偏島狀的成長。成核薄膜在高壓下的島狀成長中,經由X光搖擺曲線(ω-scan rocking curve分析,可得較低的刃差排缺陷數值,刃差排在島狀成長的成核薄膜藉由彎曲而減少。同時藉由逆偏壓測試,元件有較小的逆電流。近紫外光發光二極體在氮化銦鎵發光層含有較少銦成分,形成富銦區的機會較少,載子受非輻射性複合中心的缺陷捕捉較明顯,因此在降低刃差排的情況下,其元件在20毫安培操作下,光學亮度可提升12%。
    第二部分在藍光系統:吾人藉由改變氮化銦鎵發光層中覆蓋層溫度來控制V型缺陷的形成。由於氮化銦鎵與氮化鎵的晶格大小差異較大,在多重量子井中產生的形變造成較大應力存在發光薄膜中,因此常會以產生V型缺陷來降低整體的應力。利用改變覆蓋層的溫度,使得吸附原子在高溫下得到較長的擴散長度,可以有效抑止V型缺陷的形成,在逆偏壓測試下,元件有較小的逆電流。在高溫覆蓋層成長氮化銦鎵/氮化鎵多重量子井時,由於表面沒有產生V型缺陷,反而使得殘留應力轉換成富銦區的趨動力,進而得到高密度且較小的富銦量子點,其元件在350毫安培操作下,光學亮度可提升6.8%。
    最後一部分在綠光系統:藉由改變氮化銦鎵發光層的壓力來調整富銦量子點的大小與密度。綠光氮化銦鎵發光層中的銦含量,相對紫外光與藍光多,因此在氮化銦鎵/氮化鎵多重量子井中薄膜應力更大,元件在受到相對大的量子侷限史塔克效應時,使電子與電洞載子不容易複合,發光效率因此下降。在氮化銦鎵發光層成長時,使用低壓使吸附原子得到較長的擴散長度,吸附原子在足夠的動能下,得到高密度且較小的富銦量子點。由高低電流的波長差可以發現高密度且較小的富銦量子點同時也降低薄膜的應力。其元件在20毫安培操作下,光學亮度可提升21.5%。

    This research is focused on light emission efficiency enhancement of InGaN/GaN multiple quantum wells(MQWs) based ultraviolet(UV), blue(B) and green(G) light-emitting diodes (LEDs), which were grown by metalorganic chemical vapor deposition. The major scope is to increase the optical performance including: (1) reduction of dislocations by tuning total working pressure to modify the morphology during the buffer layer growth in UV LEDs, (2) elimination of the V-defects by changing the temperature of growing GaN capping layer in B LEDs, (3) fabrication of the more uniform and smaller embedded quantum dots in InGaN QWs by changing working pressure during the InGaN QWs layers growth in G LEDs. The achievements proposed in this research provide effective schemes to improve the light output power for the InGaN/GaN MQWs based LEDs.

    1. Overview 1 1-1 Overview of GaN-based light-emitting diodes 1 1-2 Motivation of the thesis 5 1-3 Outline of the thesis 7 2. Literature Review 8 2-1 Introduction to light emitting diodes 8 2.1.1 Structure 8 2.1.2 Lattice mismatch and strain 12 2.1.3 Polarization filed 16 2-2 Basic theory 21 2.2.1 Efficiency 21 2.2.2 Emission Spectrum 23 2-3 Size-dependent property 29 2.3.1 Nanomaterial 29 2.3.2 Confinement effect 31 2.3.3 Quantum dots theory and fabrication 33 2-4 Light emitting device 36 2.4.1 The UV spectral range 36 2.4.2 White light LEDs 40 2-5 Literature review on InGaN/GaN 44 2.5.1 V-defects formation 44 2.5.2 Quantum dots formation 50 3. Experimental apparatus 56 3-1 LEDs epitaxial process 56 3-2 LEDs chip process 58 3-3 LEDs package process 61 3-4 Microstructure, composition and morphology analysis 63 3.4.1 High resolution transmission electron microscopy (HRTEM) 63 3.4.2 Scanning electron microscopy (SEM) 65 3.4.3 Multipurpose X-ray diffraction Thin Film Diffractometer 66 3-5 Optical analysis 67 3.5.1 Photoluminescence (PL) 67 3-6 Electrical analysis 70 3.6.1 Current voltage (I-V) measurement 70 3.6.2 Light output-current (L-I) measurement 70 4. Results and Discussion 72 4-1 Improving the Brightness and Reliability of InGaN/GaN Near Ultraviolet Light-Emitting Diodes by Controlling the Morphology of the GaN Buffer Layer 73 4.1.1 Motivation 73 4.1.2 Experimental procedure 75 4.1.3 Morphology of buffer layer 76 4.1.4 Microstructure of buffer layer 80 4.1.5 Optic-electrical property 82 Conclusion 86 4-2 Efficiency Enhancement of blue light emitting diodes by eliminating V-defects from InGaN/GaN multiple quantum wells structures through GaN capping layer control 87 4.2.1 Motivation 87 4.2.2 Experimental procedure 89 4.2.3 Optical property 90 4.2.4 Morphology of MQWs layer 92 4.2.5 Microstructure of MQWs layer 95 4.2.6 Optic-electrical property 99 4.2.7 Conclusion 105 4-3 Efficiency enhancement of green light emitting diodes by improving the uniformity of embedded quantum dots in multiple quantum wells through working pressure control 106 4.3.1 Motivation 106 4.3.2 Experimental procedure 109 4.3.3 Optical property 110 4.3.4 Microstructure of MQWs layer 112 4.3.5 Optic-electrical property 115 4.3.6 Conclusion 122 5. Summary 123 5-1 Conclusion 123 5-2 Future work 124 Reference: 125 Publication 134

    [1] H. J. Round, Electrical World, 49 (1907) 309.
    [2] N. Holonyak, S.F. Bevacqua, Applied Physics Letters, 1 (1962) 82-83.
    [3] H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Applied Physics Letters, 48 (1986) 353-355.
    [4] A. Hiroshi, K. Masahiro, H. Kazumasa, A. Isamu, Japanese Journal of Applied Physics, 28 (1989) L2112.
    [5] S. Nakamura, T. Mukai, M. Senoh, Applied Physics Letters, 64 (1994) 1687-1689.
    [6] S. Nakamura, Journal of Vacuum Science & Technology A, 13 (1995) 705-710.
    [7] http://energy.gov/eere/ssl/articles/doe-publishes-2016-ssl-rd-plan.
    [8] E.F. Schubert, Light-Emitting Diodes, Cambridge University Press, (2006).
    [9] Bernard Gil, Group III Nitride Semiconductor Compounds, Clarendon Press, (1998).
    [10] H.K. Cho, J.Y. Lee, G.M. Yang, C.S. Kim, Applied Physics Letters, 79 (2001) 215-217.
    [11] X.H. Wu, L.M. Brown, D. Kapolnek, S. Keller, B. Keller, S.P. DenBaars, J.S. Speck, Journal of Applied Physics, 80 (1996) 3228-3237.
    [12] V. Potin, P. Ruterana, G. Nouet, Journal of Applied Physics, 82 (1997) 2176-2183.
    [13] T. Paskova, physica status solidi (b), 245 (2008) 1011-1025.
    [14] Y.-L. Lai, "Microstructure and optical properties of InGaN/GaN multiple quantum wells comprised of InGaN dots," in Department of Materials Science and Engineering (National Cheng Kung University, Tainan, Taiwan, (2005).
    [15] J.W. Matthews, A.E. Blakeslee, Journal of Crystal Growth, 32 (1976) 265-273.
    [16] S.C. Jain, M. Willander, J. Narayan, R.V. Overstraeten, Journal of Applied Physics, 87 (2000) 965-1006.
    [17] W.A. Melton, J.I. Pankove, Journal of Crystal Growth, 178 (1997) 168-173.
    [18] F. Bernardini, V. Fiorentini, D. Vanderbilt, Physical Review B, 56 (1997) R10024-R10027.
    [19] O. Ambacher, B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, A.J. Sierakowski, W.J. Schaff, L.F. Eastman, R. Dimitrov, A. Mitchell, M. Stutzmann, Journal of Applied Physics, 87 (2000) 334-344.
    [20] J.L. Sánchez-Rojas, J.A. Garrido, E. Muñoz, Physical Review B, 61 (2000) 2773-2778.
    [21] N.A. Shapiro, H. Feick, W. Hong, M. Cich, R. Armitage, E.R. Weber, Journal of Applied Physics, 94 (2003) 4520-4529.
    [22] E.T. Yu, X.Z. Dang, P.M. Asbeck, S.S. Lau, G.J. Sullivan, Journal of Vacuum Science & Technology B, 17 (1999) 1742-1749.
    [23] P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog, Nature, 406 (2000) 865-868.
    [24] A.P. Alivisatos, The Journal of Physical Chemistry, 100 (1996) 13226-13239.
    [25] T. Narusawa, W.M. Gibson, Physical Review Letters, 47 (1981) 1459-1462.
    [26] B. Elman, E.S. Koteles, P. Melman, C. Jagannath, J. Lee, D. Dugger, Applied Physics Letters, 55 (1989) 1659-1661.
    [27] D.J. Eaglesham, M. Cerullo, Physical Review Letters, 64 (1990) 1943-1946.
    [28] C. Bayram, M. Razeghi, Applied Physics A, 96 (2009) 403-408.
    [29] S. Figge, C. Tessarek, T. Aschenbrenner, D. Hommel, physica status solidi (b), 248 (2011) 1765-1776.
    [30] A. Khan, K. Balakrishnan, Comprehensive Semiconductor Science and Technology, (2011) 1-27.
    [31] Y.K. Su, Comprehensive Semiconductor Science and Technology, (2011) 28-100.
    [32] R. Hu, X. Luo, S. Liu, IEEE Photonics Technology Letters, 23 (2011) 1673-1675.
    [33] H.-C. Kuo, C.-W. Hung, H.-C. Chen, K.-J. Chen, C.-H. Wang, C.-W. Sher, C.-C. Yeh, C.-C. Lin, C.-H. Chen, Y.-J. Cheng, Optics Express, 19 (2011) A930-A936.
    [34] K. Jong Kyu, L. Hong, S. Eric Fred, C. Jaehee, S. Cheolsoo, P. Yongjo, Japanese Journal of Applied Physics, 44 (2005) L649.
    [35] J.K. Sheu, S.J. Chang, C.H. Kuo, Y.K. Su, L.W. Wu, Y.C. Lin, W.C. Lai, J.M. Tsai, G.C. Chi, R.K. Wu, IEEE Photonics Technology Letters, 15 (2003) 18-20.
    [36] K. Hiramatsu, S. Itoh, H. Amano, I. Akasaki, N. Kuwano, T. Shiraishi, K. Oki, Journal of Crystal Growth, 115 (1991) 628-633.
    [37] H. Amano, I. Akasaki, K. Hiramatsu, N. Koide, N. Sawaki, Thin Solid Films, 163 (1988) 415-420.
    [38] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, N. Sawaki, Journal of Crystal Growth, 98 (1989) 209-219.
    [39] J. Smalc-Koziorowska, E. Grzanka, R. Czernecki, D. Schiavon, M. Leszczyński, Applied Physics Letters, 106 (2015) 101905.
    [40] Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, S.Y. Wang, Applied Physics Letters, 72 (1998) 710-712.
    [41] O. Ambacher, Journal of Physics D: Applied Physics, 31 (1998) 2653.
    [42] Y.-L. Lai, C.-P. Liu, Z.-Q. Chen, Thin Solid Films, 498 (2006) 128-132.
    [43] M. Zhang, P. Bhattacharya, W. Guo, Applied Physics Letters, 97 (2010) 011103.
    [44] Y.-L. Lai, C.-P. Liu, Z.-Q. Chen, Applied Physics Letters, 86 (2005) 121915.
    [45] C.-C. Chuo, M.N. Chang, F.-M. Pan, C.-M. Lee, J.-I. Chyi, Applied Physics Letters, 80 (2002) 1138-1140.
    [46] W. Liu, D.G. Zhao, D.S. Jiang, P. Chen, Z.S. Liu, J.J. Zhu, M. Shi, D.M. Zhao, X. Li, J.P. Liu, S.M. Zhang, H. Wang, H. Yang, Journal of Alloys and Compounds, 625 (2015) 266-270.
    [47] Z. Deng, Y. Jiang, W. Wang, L. Cheng, W. Li, W. Lu, H. Jia, W. Liu, J. Zhou, H. Chen, Sci. Rep., 4 (2014).
    [48] L. Wenbin, W. Lai, W. Lei, X. Yuchen, Y. Di, H. Zhibiao, L. Yi, Applied Physics Express, 7 (2014) 025203.
    [49] L. Wenbin, W. Lai, W. Jiaxing, X. Yuchen, Z. Jiyuan, Y. Di, H. Zhibiao, L. Yi, Japanese Journal of Applied Physics, 52 (2013) 08JG13.
    [50] I.h. Ho, G.B. Stringfellow, Applied Physics Letters, 69 (1996) 2701-2703.
    [51] S.Y. Karpov, MRS Internet Journal of Nitride Semiconductor Research, 3 (1998) 16.
    [52] J.W. Cahn, J.E. Hilliard, The Journal of Chemical Physics, 28 (1958) 258-267.
    [53] David A. Porter, Kenneth E. Easterling, Mohamed Sherif, Phase Transformations in Metals and Alloys, CRC Press, (2009).
    [54] D.B. Williams, C. B. Carter, Transmission Electron Microscopy, Springer Press, (1996).
    [55] C.-R. Lee, S.-J. Son, I.-H. Lee, J.-Y. Leem, S.-K. Noh, Journal of Crystal Growth, 171 (1997) 27-31.
    [56] K. Hiramatsu, S. Itoh, H. Amano, I. Akasaki, N. Kuwano, T. Shiraishi, K. Oki, Journal of Crystal Growth, 115 (1991) 628-633.
    [57] S. Figge, T. Böttcher, S. Einfeldt, D. Hommel, Journal of Crystal Growth, 221 (2000) 262-266.
    [58] K.-S. Kim, K.-B. Kim, S.-H. Kim, Journal of Crystal Growth, 233 (2001) 167-176.
    [59] R.H. Horng, W.K. Wang, S.C. Huang, S.Y. Huang, S.H. Lin, C.F. Lin, D.S. Wuu, Journal of Crystal Growth, 298 (2007) 219-222.
    [60] H.S. Cheong, M.G. Na, Y.J. Choi, T.V. Cuong, C.H. Hong, E.K. Suh, B.H. Kong, H.K. Cho, Journal of Crystal Growth, 298 (2007) 699-702.
    [61] B.L. Liu, M. Lachab, A. Jia, A. Yoshikawaa, K. Takahashi, Journal of Crystal Growth, 234 (2002) 637-645.
    [62] P. Vennéguès, B. Beaumont, S. Haffouz, M. Vaille, P. Gibart, Journal of Crystal Growth, 187 (1998) 167-177.
    [63] Y.S. Cho, H. Hardtdegen, N. Kaluza, R. Steins, G. Heidelberger, H. Lüth, Journal of Crystal Growth, 307 (2007) 6-13.
    [64] J. Chen, S.M. Zhang, B.S. Zhang, J.J. Zhu, G. Feng, X.M. Shen, Y.T. Wang, H. Yang, W.C. Zheng, Journal of Crystal Growth, 254 (2003) 348-352.
    [65] J. Chen, S.M. Zhang, B.S. Zhang, J.J. Zhu, X.M. Shen, G. Feng, J.P. Liu, Y.T. Wang, H. Yang, W.C. Zheng, Journal of Crystal Growth, 256 (2003) 248-253.
    [66] J. Hornstra, Journal of Physics and Chemistry of Solids, 5 (1958) 129-141.
    [67] B.S. Simpkins, E.T. Yu, P. Waltereit, J.S. Speck, Journal of Applied Physics, 94 (2003) 1448-1453.
    [68] Q. Dai, M.F. Schubert, M.H. Kim, J.K. Kim, E.F. Schubert, D.D. Koleske, M.H. Crawford, S.R. Lee, A.J. Fischer, G. Thaler, M.A. Banas, Applied Physics Letters, 94 (2009) 111109.
    [69] C.-H. Lu, Y.-C. Li, Y.-H. Chen, S.-C. Tsai, Y.-L. Lai, Y.-L. Li, C.-P. Liu, Journal of Alloys and Compounds, 555 (2013) 250-254.
    [70] N. Sharma, P. Thomas, D. Tricker, C. Humphreys, Applied Physics Letters, 77 (2000) 1274-1276.
    [71] P. Visconti, K.M. Jones, M.A. Reshchikov, R. Cingolani, H. Morkoc, R.J. Molnar, Applied Physics Letters, 77 (2000) 3532-3534.
    [72] N. Nanhui, W. Huaibing, L. Jianping, L. Naixin, X. Yanhui, H. Jun, D. Jun, S. Guangdi, Solid-State Electronics, 51 (2007) 860-864.
    [73] T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, M. Ikeda, Applied Physics Letters, 76 (2000) 3421-3423.
    [74] F.C.-P. Massabuau, S.-L. Sahonta, L. Trinh-Xuan, S. Rhode, T.J. Puchtler, M.J. Kappers, C.J. Humphreys, R.A. Oliver, Applied Physics Letters, 101 (2012) 212107.
    [75] S.C. Tsai, H.C. Fang, C.H. Lu, Y.L. Lai, C.P. Liu, Journal of Display Technology, 12 (2016) 869-872.
    [76] J.J.-H. Lin, S.-J. Huang, Y.-K. Su, K.-W. Huang, Applied Surface Science, 354 (2015) 168-172.
    [77] Y. Motokazu, M. Tomotsugu, N. Yukio, S. Shuji, N. Isamu, S. Shinya, D. Kouichiro, S. Masahiko, M. Takashi, Japanese Journal of Applied Physics, 41 (2002) L1431.
    [78] M. Sawicka, C. Cheze, H. Turski, G. Muziol, S. Grzanka, C. Hauswald, O. Brandt, M. Siekacz, R. Kucharski, T. Remmele, M. Albrecht, M. Krysko, E. Grzanka, T. Sochacki, C. Skierbiszewski, Applied Physics Letters, 102 (2013) 111107.
    [79] P.-M. Tu, C.-Y. Chang, S.-C. Huang, C.-H. Chiu, J.-R. Chang, W.-T. Chang, D.-S. Wuu, H.-W. Zan, C.-C. Lin, H.-C. Kuo, C.-P. Hsu, Applied Physics Letters, 98 (2011) 211107.
    [80] Y. Yang, L. Zhang, T. Wei, Y. Zeng, Journal of Display Technology, 11 (2015) 456-460.
    [81] J.-Y. Chang, M.-C. Tsai, Y.-K. Kuo, Optics Letters, 35 (2010) 1368-1370.
    [82] L. Yen-Lin, L. Chuan-Pu, H. Tao-Hung, L. Yung-Hsiang, C. Hung-Chin, L. Ray-Ming, C. Zheng-Quan, Nanotechnology, 17 (2006) 4300.
    [83] T.M. Smeeton, C.J. Humphreys, J.S. Barnard, M.J. Kappers, Journal of Materials Science, 41 (2006) 2729-2737.
    [84] J.P. O’Neill, I.M. Ross, A.G. Cullis, T. Wang, P.J. Parbrook, Applied Physics Letters, 83 (2003) 1965-1967.
    [85] S.-C. Tsai, C.-H. Lu, C.-P. Liu, Nano Energy, 28 (2016) 373-379.
    [86] W.Z. Tawfik, J. Song, J.J. Lee, J.S. Ha, S.-W. Ryu, H.S. Choi, B. Ryu, J.K. Lee, Applied Surface Science, 283 (2013) 727-731.
    [87] H.H. Yao, T.C. Lu, G.S. Huang, C.Y. Chen, W.D. Liang, H.C. Kuo, S.C. Wang, Nanotechnology, 17 (2006) 1713.
    [88] Q. Wang, T. Wang, J. Bai, A.G. Cullis, P.J. Parbrook, F. Ranalli, Applied Physics Letters, 93 (2008) 081915.
    [89] Y.-R. Wu, Y.-Y. Lin, H.-H. Huang, J. Singh, Journal of Applied Physics, 105 (2009) 013117.
    [90] H. Sun, Z. Ji, H. Wang, H. Xiao, S. Qu, X. Xu, A. Jin, H. Yang, Journal of Applied Physics, 114 (2013) 093508.
    [91] Z. Li, J. Kang, B. Wei Wang, H. Li, Y. Hsiang Weng, Y.-C. Lee, Z. Liu, X. Yi, Z. Chuan Feng, G. Wang, Journal of Applied Physics, 115 (2014) 083112.
    [92] S. Karpov, Optical and Quantum Electronics, 47 (2015) 1293-1303.
    [93] G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, E. Zanoni, Journal of Applied Physics, 114 (2013) 071101.
    [94] F. Akyol, D.N. Nath, S. Krishnamoorthy, P.S. Park, S. Rajan, Applied Physics Letters, 100 (2012) 111118.
    [95] Y.J. Lee, J.M. Hwang, T.C. Hsu, M.H. Hsieh, M.J. Jou, B.J. Lee, T.C. Lu, H.C. Kuo, S.C. Wang, IEEE Photonics Technology Letters, 18 (2006) 1152-1154.
    [96] H. Guo-Dong, J. Ahmed Mohammed, T. Tokio, S. Mitsuaki, W. Xue-Lun, K. Hiroyuki, H. Yukiko, T. Keigo, Applied Physics Express, 7 (2014) 102101.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE