簡易檢索 / 詳目顯示

研究生: 劉應凡
Liu, Ying-Fan
論文名稱: 苯乙炔在銅(100)與氧/銅(100)表面的吸附與熱反應研究
Adsorption and Thermal Reactions of Phenylacetylene on Cu(100) and O/Cu(100) Surfaces
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 77
中文關鍵詞: 苯乙炔Cu(100)O/Cu(100)程序控溫反應/脫附(TPR/D)反射吸收紅外光譜(RAIRS)X光光電子譜(XPS)密度泛函理論(DFT)
外文關鍵詞: Phenylacetylene, Cu(100), O/Cu(100), temperature-programmed reaction/desorption(TPR/D), reflection-absorption infrared spectroscopy(RAIRS), X-ray photoelectron spectroscopy(XPS), density functional theory(DFT)
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文是探討超高真空(ultra-high vacuum)系統中苯乙炔(Phenylacetylene (PA), C6H5-C≡C-H)在Cu(100)以及O/Cu(100)表面的吸附以及熱反應。使用以下幾種表面分析技術:程序控溫反應/脫附(temperature-programmed reaction/desorption, TPR/D)、反射吸收紅外光譜(reflection-absorption infrared spectroscopy, RAIRS)、X光光電子譜(x-ray photoelectron spectroscopy, XPS),並輔以密度泛函理論計算(density functional theory, DFT)以模擬分子的吸附結構。
    Phenylacetylene/Cu(100)的熱反應產物有Styrene、Benzene以及H2。RAIR光譜顯示PA分子以兩個炔基碳原子鍵結於表面,導致C≡C-H特徵振動吸收訊號(~3327 cm-1)消失,XPS也證明此分子以炔基碳與表面鍵結,產生了283.2 eV的C1s束縛能峰。PA分子在350 K-450 K之間炔基碳氫(≡C-H)斷鍵並可能產生氫化中間物,如(C6H5)C2Hx, x=3,2。在370 K有少量Styrene脫附,高於500 K發生C-C和C-H鍵斷裂生成H2,以及少量Benzene,並在表面留下殘碳。
    Phenylacetylene/O/Cu(100)的熱反應產物有H2、H2O、CO、CO2以及少量Benzene。XPS數據指出表面上的O(ad)於低溫(145 K)先抓取炔基氫(≡C-H)形成OH(ad),相比無O(ad)下,≡C-H分解的溫度低了許多。接著在200 K-350 K形成H2O,升溫到400 K中間物(C6H5-C≡C)持續分解CO、CO2以及H2O。

    In this research, adsorption and thermal reactions of Phenylacetylene (C6H5-C≡C-H) on Cu(100) and O/Cu(100) were studied, using temperature-programmed reaction/desorption (TPR/D), reflection-absorption infrared spectroscopy (RAIRS) and X-ray photoelectron spectroscopy. Additionally, density functional theory (DFT) calculations were performed for the molecular adsorption structures. On the Cu(100) surface, styrene, benzene and H2 are formed to be the reaction products. The IR and XPS results show that the typical ≡C-H stretching peak at 3327 cm-1 disappears and that the C1s binding energy peak at 283.2 eV forms, upon adsorption PA on Cu(100), showing the PA surface bonding via the C≡C. At ~370 K, the phenylacetylene undergoes molecular desorption and decomposition to form styrene and benzene. Surface intermediates of (C8H5)C2Hx, x=3,2 are likely to be generated on the surface. On O/Cu(100), the TPR/D shows the formation of H2, H2O, CO and CO2, with a small amount of benzene, in the reaction of PA. The ≡C-H is attacked by the adsorbed O (O(ad)) even at 145 K, forming OH(ad) groups. H2O is desorbed between 200 K and 350 K. Further reaction of the intermediate forms H2O, CO and CO2, with residual carbon left on the surface.

    摘要 I 目錄 VII 圖目錄 IX 表目錄 XII Scheme目錄 XIII 第一章 緒論 1 1.1 表面化學重要史事 1 1.2 表面 1 1.2.1 米勒指數(Miller index) 2 1.3 表面反應 3 1.4 表面吸附過程 5 1.5 真空需求 7 1.6 研究動機 8 1.6.1銅(I)催化之疊氮-炔環加成反應(Copper(I)-catalyzed azide-alkyne cycloaddition, CuAAC)介紹 8 1.6.2 CuAAC之反應機制 9 1.6.3 CuAAC的催化劑來源 11 1.6.4 CuAAC的表面修飾應用 13 1.6.5 CuAAC的真空應用 14 1.6.6 疊氮分子與炔基分子的表面反應 15 第二章 真空系統及實驗技術 21 2.1 超高真空系統 21 2.2 真空幫浦 22 2.2.1 機械迴轉幫浦(Mechanical rotary pump) 22 2.2.2 渦輪分子幫浦(Turbomolecular pump) 23 2.2.3 離子幫浦(Ion pump) 24 2.2.4 鈦昇華幫浦(Titanium sublimination pump) 26 2.3 表面實驗技術 27 2.3.1 程序控溫反應/脫附 (Temperature-Programmed Reaction/Desorption, TPR/D) 27 2.3.2 反射式吸收紅外光譜儀 (Reflection-Absorption Infrared Spectroscopy, RAIRS) 29 2.3.3 X光光電子譜 (X-ray photoelectron spectroscopy) 32 第三章 實驗前處理 35 3.1 Cu(100)單晶前處理 35 3.2 有氧表面的製備 35 3.3 藥品前處理 35 第四章 結果與討論-Phenylacetylene 37 4.1 Phenylacetylene在Cu(100)表面上的研究-TPD/RAIRS/XPS 37 4.1.1 Phenylacetylene在Cu(100)表面上的TPD研究 37 4.1.2 Phenylacetylene在Cu(100)表面上的RAIRS研究 46 4.1.3 Phenylacetylene在Cu(100)表面上的DFT研究 50 4.1.4 Phenylacetylene在Cu(100)表面上的XPS研究 57 4.1.5 Discussion 60 4.2 Phenylacetylene在O/Cu(100)表面上的研究-TPD/RAIRS/XPS 61 4.2.1 Phenylacetylene在O/Cu(100)表面上的TPD研究 61 4.2.2 Phenylacetylene在O/Cu(100)表面上的RAIRS研究 66 4.2.3 Phenylacetylene在O/Cu(100)表面上的XPS研究 68 4.3 Phenylacetylene在Cu(100)反應與Cu(111)比較 70 第五章 結論 71 5.1 Phenylacetylene/Cu(100)實驗結論 71 5.2 Phenylacetylene/O/Cu(100)實驗結論 72 參考文獻 73

    1. Wintterlin, J.; Volkening, S.; Janssens, T. V. W.; Zambelli, T.; Ertl, G. Atomic and Macroscopic Reaction Rates of a Surface-Catalyzed Reaction. Science 1997, 278, 1931-1934.
    2. Ertl, G. Primary Steps in Catalytic Synthesis of Ammonia. J. Vac. Sci. Technol. A. 1983, 1, 1247-1253.
    3. Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. Copper(I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates. J. Am. Chem. Soc. 2005, 127, 210-216.
    4. Straub, B. F. m-Acetylide and m-Alkenylidene Ligands in “Click” Triazole Syntheses. Chem. Commun. 2007, 37, 3868-3870.
    5. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharplee, K. B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. 2002, 114, 2708-2711.
    6. Orgueira, H. A.; Fokas, D.; Isome, Y.; Chan, P. C.- M.; Baldino, C. M. Regioselective Synthesis of [1,2,3]-Triazoles Catalyzed by Cu(I) Generated in situ from Cu(0) Nanosize Activated Powder and Amine Hydrochloride Salts. Tetrahedron Lett. 2005, 46, 2911-2914.
    7. TornØe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057-3064.
    8. Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Polytriazoles as Copper(I)-Stabilizing Ligands in Catalysis. Org. Lett. 2004, 6, 2853-2855.
    9. Zhang, Z.; Dong, C.; Yang, C.; Hu, D.; Long, J.; Wang, L.; Li, H.; Chen, Y.; Kong, D. Stabilized Copper(I) Oxide Nanoparticles Catalyze Azide-Alkyne Click Reactions in Water. Adv. Synth. Catal. 2010, 352, 1600-1604.
    10. Kimber, R. L.; Lewis, E. A.; Parmeggiani, F.; Smith, K.; Bagshaw, H.; Starborg, T.; Joshi, N.; Figueroa, A. I.; van der Laan, G,; Cibin, G.; Gianolio, D.; Haigh, S. J.; Pattrick, R. A. D.; Turner, N. J.; Lloyd, J. R. Biosynthesis and Characterization of Copper Nanoparticles Using Shewanella oneidensis: Application for Click Chemistry. Small 2018,14, 1703145-1703152.
    11. Stenehjem, E. D.; Ziatdinov, V. R.; Stack, T. D. P.; Chidsey, C. E. D. gas-Phase Azide Functionalization of Carbon. J. Am. Chem. Soc. 2013, 135, 1110-1116.
    12. Ciampi, S.; Böcking, T.; Kilian, K. A.; James, M.; Harper, J. B.; Gooding, J. J. Functionalization of Acetylene-Terminated Monolayers on Si(100) Surface: A Click chemistry Approach. Langmuir 2007, 23, 9320-9329.
    13. Bebensee, F.; Bombis, C.; Vadapoo, S.-R.; Cramer, J. R.; Besenbacher, F.; Gothelf, K. V.; Linderoth, T. R. On-Surface Azide-Alkyne Cycloaddition on Cu(111): Does It “Click” in Ultrahigh Vacuum? J. Am. Chem. Soc. 2013, 135, 2136-2139.
    14. Arado, O. D.; Monig, H.; Wagner, H.; Franke, J.- H.; Langewish, G.; Held, P. A.; Studer, A.; Fuchs, H. On-Surface Azide-Alkyne Cycloaddition on Au(111). ACS Nano 2013, 7, 8509-8515
    15. Sohn, Y.; Wei. W.; White, J. M. Phenylacetylene on Cu(111): Adsorption Geometry, Interfacial Electronic Structures and Thermal Chemistry. J. Phys. Chem. C 2007, 111, 5101-5110.
    16. Ford, M. J.; Hoft, R. C.; Mcdonagh, A. Theoretical Study of Ethynylbenzene Adsorption on Au(111) and Implication for a New Class of Self-Assembled Monolayer. J. Phys. Chem. B 2005, 109, 20387-20392.
    17. Cheng, C. -H.; Yu, P. -T.; Ma, K. -C.; Wang, Y. -C.; Wu, S. -M.; Chiang, C. - M. Capture of Bridging Imido and Azavinylidene Intermediates Engaged in Nitrogen Functionality Changes from Primary Azide to Nitrile on a Copper Surface. J. Phys. Chem. C 2013, 117, 20784-20790.
    18. Pinto, R. M.; Guerra, M.; Copeland, G.; Olariu, R. I.; Rodrigues, P.; Barros, M. T.; Costa, M. L.; Dias, A. A. The Mechanism of Pyrolysis of Benzyl Azide: Spectroscopic Evidence for Benzenemethanimine Formation. J. Phys. Chem, A 2015, 119, 4118-4126.
    19. 江育賢,''1-溴-4-乙炔苯在銅(100)和氧/銅(100)表面上的熱反應研究'' 國立成功大學化學所碩士論文, 2015.
    20. 蘇青森,1999,真空技術,東華書局出版,台北.
    21. 呂登復,1996年6月,實用真空技術,國興出版社,台北.
    22. Varian Associates. Vacuum Products Training Department. Basic Vacuum Practice Varian, 1992.
    23. 國科會精密儀器發展中心, 2004, 真空技術與應用,全華圖書, 高雄.
    24. Oura, K.; Lifshits, V. G.; Saranin, A.; Zotov, A.V.; Katayama, M. Sur. Sci. Springer, 2003.
    25. Nawrocka, A.; Lamorska, J. Determination of Food Quality by Using Spectroscopic Methods. Advances in Agrophysical Research. 2013.
    26. Siegbahn, K.; Nordling, C.; Fahlman, A.; Nordberg, R.; Hamrin, K.; Hedman, J.; Johansson, G.; Bergmark, T.; Karlsson, S.; Lindgren, I.; Lindberg, B. ESCA: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy. Nova Acta Regiae Societatis Scientiarum Upsaliensis, Series IV,1967, 20, 5-282.
    27. Sexton, B. A. Surface Vibrations of Adsorbed Intermediates in the Reaction of Alcohols with Cu(100). Surf. Sci. 1979, 88, 299-318.
    28. Chorkendorff, I.; Rasmussen, P. B. Reconstruction of Cu(100) by Adsorption of Atomic Hydrogen. Surf. Sci. 1991, 248, 35-44.
    29. Xi, Ming,; Bent, B. E. Evidence for An Eley-Rideal Mechanism in the Addition of Hydrogen Atoms to Unsaturated Hydrocarbons on Cu(111). J. Vac. Sci. Technol. B. 1992, 10, 2440-2446.
    30. Császár, A. G.; Fogarasi, G. Theoretical Prediction of the Vibrational Spectrum, Deometry, and Scaled Quantum Mechanical Force Field for Phenylacetylene. J. Phys. Chem. 1989, 93, 7644-7651.
    31. Garbuzova, I. A.; Aleksanyan, V. T.; Gol’ding, I. R.; Sladkov, A. M. Vibrational Spectra of A Complex of Phenylacetylene with Copper Chloride. B. Acad. Sci. USSR CH+, 1974, 23, 1937.
    32. Iucci, G.; Carravetta, V.; Altamura, P.; Russo, M. V.; Paolucci, G.; Goldoni, A.; Polzonetti, G. XPS, NEXAS and Theoretical Study of Phenylacetylene Adsorbed on Cu(100). Chem. Phys. 2004, 302, 43-52.
    33. Iucci, G.; Carravetta, V.; Paolucci, G.; Goldoni, A.; Russo, M. V.; Polzonetti, G. Phenylacetylene Adsorption on Rh(100): A Photoemission and Photoabsorption Investigation. Chem. Phys. 2005, 310, 43-49.
    34. Outka, D. A.; Friend, C. M.; Jorgensen, S.; Madix, R. J. Adsorption and Hydrogenation of Acetylene on Cu(110) and Cu(110)-O Surfaces. J. Am. Chem. Soc. 1983, 105, 3468-3472.
    35. Solomon, J. L.; Madix, R. J. Orientation and Absolute Coverage of Benzene, Aniline, and Phenyl on Ag(110) Determined by NEXAFS and XPS. Surf. Sci. 1991, 255, 12-30.
    36. Ellis, T. H.; Kruus, E. J.; Wang, H. Adsorption and Reaction of Water on Oxygen Precovered Cu(100). J. Vac. Sci. Technol. A. 1993, 11, 2117-2121.
    37. Vellianitis, D. K.; Kammler, T.; Küppers, J. Interaction of Gaseous Hydrogen Atoms with Oxygen Covered Cu(100) Surfaces. Surf. Sci. 2001, 482-485, 166-170.
    38. Eren, B.; Lichtenstein, L.; Wu, C. H.; Bluhm, H.; Somorjai, G. A.; Salmeron, M. Reaction of CO with Preadsorbed Oxygen on Low-Index Copper Surfaces: An Ambient Pressure X-ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study. J. Phys. Chem. C 2015, 119, 14669-14674.
    39. Vesselli, E.; De Rogatis, L.; Baraldi, A.; Comelli, G.; Graziani, M.; Rosei, R. Structural and Kinetic Effects on a Simple Catalytic Reaction: Oxygen Reduction on Ni(110). J. Chem. Phys. 2005, 122, 144710.
    40. Sexton, B. A.; Hughes, A, E. A Comparison of Weak Molecular Adsorption of Organic Molecules on Clean Copper and Platinum Surfaces. Surf. Sci. 1984, 140, 227-248.
    41. Marinova, T. S.; Stefanov, P. Interaction of Acetylene with an Oxygen-Covered Cu(100) Surface. Surf. Sci. 1989, 219, 490-498.

    無法下載圖示 校內:2026-09-08公開
    校外:2026-09-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE